Einige der Monde der Gasriesen unseres Sonnensystems zählt die Forschung zu den vielversprechendsten Orten für die Suche nach außerirdischem Leben. Unter ihrer eisigen Oberfläche vermutet man nämlich flüssige Ozeane. Im Rahmen des Projekts EXO-OCEANS sollen diese Ozeane nun näher untersucht werden – mit Simulationen und Beobachtungen von der Erde.
Kölner Geophysiker erhält die wichtigste europäische Forschungsförderung / Gefördertes Projekt erforscht Ozeane auf Monden im äußeren Sonnensystem als Grundlage für die Suche nach extraterrestrischem Leben
Der Europäische Forschungsrat (ERC) hat den Kölner Geophysiker Professor Dr. Joachim Saur mit dem ERC Advanced Grant ausgezeichnet. Saur erhält Fördergelder in Höhe von 2,1 Millionen Euro. Der ERC Advanced Grant gilt als der wichtigste Förderpreis der europäischen Forschungslandschaft.
Joachim Saur ist Professor am Institut für Geophysik und Meteorologie der Universität zu Köln. Seine Forschung beschäftigt sich mit den Planeten und der Physik des Weltraums. Mit dem ERC Advanced Grant für das Projekt EXO-OCEANS werden Saur und sein Team extraterrestrische Ozeane vornehmlich auf den Monden im äußeren Sonnensystem suchen und erforschen. Die Existenz von flüssigem Wasser gilt als eine der wenigen essentiellen Voraussetzungen für Leben – zumindest so, wie wir es auf der Erde kennen.
Mit innovativen Methoden und Techniken, die aus einer Kombination von Computersimulationen und neuen Teleskopbeobachtungen bestehen, plant das Team um Saur, Ozeane auf Saturnmonden (Zum Beispiel Enceladus der ebenso wie andere Monde ein heißer Kandidat ist) und auch außerhalb unseres Sonnensystems zu suchen. Zudem ermöglicht die Forschungsarbeit erstmals detaillierte Analysen der Ozeane auf den Jupitermonden Europa und Ganymed. Bisherige Ansätze konnten auf diesen Jupitermonden Wasservorkommen zwar nachweisen, sind aber an ihre Grenzen gestoßen, wenn es um weitere Charakterisierungen ging.
Das nun geförderte Projekt EXO-OCEANS soll die Erforschung von extraterrestrischen Ozeanen erheblich voranbringen und damit Grundlagen für die Suche nach der Existenz außerirdischen Lebens schaffen. Das Projekt wird zudem wichtige Ergebnisse für die ab ca. 2030 geplanten weiteren Untersuchungen der Jupitermonde Ganymed und Europa durch die ESA und NASA Missionen JUICE und EUROPA CLIPPER liefern.
Die ESA-Mission JUICE soll die Monde des Jupiter erforschen. Bild: JUICE: ESA/ATG medialab, Jupiter: NASA/ESA/J. Nichols (University of Leicester); Ganymed: NASA/JPL; Io: NASA/JPL/University of Arizona; Callisto und Europa: NASA/JPL/DLR Die Nasa -Mission Europa Clipper. Europa ist im Sonnensystem einer der Geheimtipps, wo Leben entstanden sein könnte. Der Grund, warum die Nasa 2023 unbedingt ihre Mission Europa Clipper dorthin schicken will.
ERC Advanced Grants werden an herausragende Wissenschaftlerinnen und Wissenschaftler für Projekte vergeben, die aufgrund ihres innovativen Ansatzes mit Unsicherheiten verbunden sind, aber bahnbrechende neue Wege in ihrem jeweiligen Forschungsfeld eröffnen können. Gefördert werden Wissenschaftlerinnen und Wissenschaftler, die über Jahre konstant erfolgreich auf höchstem Niveau arbeiten.
Joachim Saur studierte Physik und Geophysik an den Universitäten Stuttgart und Köln. Anschließend arbeitete er als Postdoc am Observatoire de la Côte d’Azur (Nizza, Frankreich) und an der Johns Hopkins University (Baltimore, Maryland, USA) sowie als Senior Research Scientist am Applied Physics Laboratory (Laurel, Maryland, USA). 2005 kehrte Saur als Professor an das Institut für Geophysik und Meteorologie nach Köln zurück. In den Jahren 2011 und 2015 hatte er zudem eine Gastprofessur an der Johns Hopkins University inne.
Der Jet – ein Strom heißer Materie – entspringt oben, das Bild zeigt rund drei Lichtjahre.(Foto: J.Y. Kim/MPIfR/EHT-Kollaboration)
Es ist eine große Nachricht, die in diesen Tagen jedoch untergeht: Die zweite Aufnahme eines schwarzen Loches führt Forscher mitten in die Abgründe der Gravitation.
Man kann schon ganz schön Pech haben als Forscher. Da veröffentlicht man ein Bild, das – nüchtern betrachtet – einfach unglaublich ist, fabelhaft, faszinierend, bewusstseinsverändernd. Und dann ist es aber nicht das erste, sondern das zweite seiner Art, und vor allem ist Corona, und so gut wie niemand interessiert sich dafür. Tja.
Das kann man nun leider nicht ändern, Ausnahmezustand ist Ausnahmezustand, Viren gehen vor. Aber hier sei trotzdem festgehalten: Das zweite Bild, welches das Team des Event-Horizon-Teleskops in dieser Woche präsentierte, ist kaum weniger spektakulär als sein Vorgänger, der vor einem Jahr um die Welt ging – die erste Aufnahme eines Schwarzen Lochs.
Nummer zwei sieht mit etwas verschwommenen gelb-roten Formen auf schwarzem Grund ähnlich aus wie Nummer eins. Es zeigt zwar nicht direkt den kosmischen Abgrund, aus dem nicht einmal das Licht entkommen kann. Aber dafür dessen Rand, wo heiße Materie knapp dem Verschlungenwerden entgeht und, auf nahezu Lichtgeschwindigkeit beschleunigt, als „Jet“ weit ins All hinausgeschleudert wird. Und das mit einer Wucht, die alle menschliche Vorstellungskraft übersteigt.
Mit dem Event Horizon Telescope öffnete sich wirklich ein neues Fenster zum Universum
Es ist ein Bild, das in jeder Hinsicht an Grenzen geht: Das abgebildete Objekt ist fünf Milliarden Lichtjahre entfernt – rund hunderttausendmal weiter als die Nachbargalaxien der Milchstraße, viel weiter als das erste je fotografierte Schwarze Loch in der Galaxie M87. Es ist schwer, seine Leuchtkraft ist gewaltig, und es ist riesig; der Ursprung des Jets, nur eine Haaresbreite vom Abgrund entfernt, erstreckt sich über mehrere Lichtjahre. Von der Erde zur Sonne sind es acht Lichtminuten.
Vor allem aber zeigt die Aufnahme, dass das virtuelle Radioteleskop-Netzwerk namens Event Horizon Telescope ähnlich wie vor einigen Jahren die Gravitationswellen-Detektoren wirklich ein neues Fenster zum Universum geöffnet hat. Die Abgründe der Gravitation – früher ein reiner Fall für Theoretiker, jeder Beobachtung entzogen – werden nun sichtbar. Und das Teleskop wird immer besser: An der Messrunde im kommenden Jahr beteiligen sich drei weitere Teleskope, möglicherweise könnte irgendwann ein Weltraumteleskop hinzukommen. Es ist ein wissenschaftliches Abenteuer, und es fängt gerade erst an.
Forscher fotografieren erstmals Jet eines Schwarzen Lochs
Vor einem Jahr wurde das erste Bild eines Schwarzen Lochs veröffentlicht.
Jetzt gibt es ein zweites.
Es zeigt Materie, die dem Loch knapp entkommen ist.
Ziemlich genau ein Jahr nachdem das erste direkte Bild eines Schwarzen Lochs um die Welt ging, legen die Forscher von der internationalen Event-Horizon-Kollaboration nach: Am Dienstag veröffentlichten sie eine zweite Aufnahme, die auf Daten der gleichen Messrunde beruht. Sie zeigt ein Objekt namens 3C279. Es ist rund hundertmal weiter entfernt als die Galaxie M87, in der das erste Schwarze Loch fotografiert wurde – aber auch um ein Vielfaches heller. Es handelt sich dabei um einen Quasar: Eine Galaxie, in deren Zentrum sich ein Schwarzes Loch mit etwa einer Milliarde Sonnenmassen befindet. Und das, während es sich eifrig Materie einverleibt, enorm starke Radiostrahlung aussendet.
Erstmals haben die Forscher nun sichtbar gemacht, wie in der Nähe des Schwarzen Loches der sogenannte Jet entsteht, ein Strom heißer Materie, den das Objekt weit hinaus ins All schleudert. Und sie konnten beobachten, wie er sich krümmt und verändert: Innerhalb weniger Tage waren deutliche Unterschiede zu erkennen, was auf verblüffende Geschwindigkeiten schließen lässt.
Dass es Jets gibt, war bekannt – doch nie kamen Forscher ihrer Entstehung so nahe
Zwar lässt ein Schwarzes Loch nichts entkommen, was einmal seinen „Ereignishorizont“ überschritten hat; keine Materie, kein sichtbares Licht und auch keine Radiowellen, die das Event-Horizon-Teleskop (EHT) auffangen könnte. Aber dennoch können diese Objekte so hell strahlen, dass man sie wie 3C279 noch aus rund fünf Milliarden Lichtjahren Entfernung beobachten kann.
Die Strahlung, die Quasare freigeben, entsteht während ihrer üppigen Mahlzeiten: Bevor Materie ins Zentrum des Schwarzen Lochs stürzt, sammelt sie sich in einer schnell rotierenden sogenannten Akkretionsscheibe rund um das Zentrum. Dort heizt sie sich auf und beginnt zu strahlen. Hinzu kommen quasi die Krümel der Mahlzeit: Ein kleiner Teil der Materie in der Akkretionsscheibe wird nicht verschlungen, sondern senkrecht zur Scheibe ins All hinausgeschleudert; das ist der Jet.
Dass es solche Jets gibt, war lange bekannt; es gibt auch Aufnahmen, die zeigen, wie Materie weit aus dem Kern einer Galaxie herausbricht. Aber nie zuvor sind Forscher dem Entstehungspunkt eines solchen Jets so nahe gekommen – das Bild erlaubt einen Blick mitten hinein ins Zentrum der Galaxie, nah an der Akkretionsscheibe des Schwarzen Loches, am Rand des tiefsten denkbaren Abgrunds.
Die Materie bewegt sich mit nahezu Lichtgeschwindigkeit
Und die Ergebnisse zeigen, wie wertvoll so ein Blick sein kann. Zum einen sind die Forscher verblüfft, dass der Jet offenbar nicht gradlinig verläuft, sondern eine Struktur quer zu seiner Flugbahn zeigt, als böge er um die Ecke. „Wir wissen noch nicht, warum der Jet sich an seinem Fußpunkt so stark krümmt“, sagt Thomas Krichbaum vom Max-Planck-Institut für Radioastronomie in Bonn, der an der Messung beteiligt war. „Vielleicht wird das Jetplasma aufgrund der Magnetfelder auf gekrümmte Bahnen gezwungen. Es könnte aber auch ein Schockwellen-Phänomen sein.“
Aus den Unterschieden zwischen den Aufnahmen, die sich über zwei Wochen verteilten, ergibt sich, dass sich die abgebildete Materie scheinbar mit fast zwanzigfacher Lichtgeschwindigkeit bewegt. Die tatsächliche Geschwindigkeit dürfte zwar gemäß der Relativitätstheorie geringer sein als die Lichtgeschwindigkeit. Es wirkt nur so schnell, weil sich der Quasar auf die Erde zubewegt und seinem eigenen Licht hinterher eilt. Aber auch wenn man diese Korrektur mit einberechnet, bleibt das hohe Tempo schwer zu erklären. „Der Mechanismus, der den Jet antreibt, muss sehr effizient sein“, sagt Krichbaum.
Mit dem virtuellen Riesenteleskop EHT ließe sich sogar eine Apfelsine auf dem Mond erkennen
Die Auflösung der neuen Aufnahme ist auf den ersten Blick nicht mehr ganz so eindrucksvoll wie beim ersten Bild; statt dem Schatten des Schwarzen Lochs und seiner Akkretionsscheibe sind nur Teile des Jets als helle Flecken zu sehen. Das liegt aber nur daran, dass der Quasar so viel weiter entfernt ist als das erste jemals direkt abgebildete Schwarze Loch. Tatsächlich bleibt die Auflösung enorm, und sie kann nur erreicht werden, weil sich für das EHT acht Radioteleskope auf der ganzen Welt zu einem virtuellen Riesen-Teleskop zusammengeschlossen haben. Der vor einem Jahr häufig bemühte Vergleich gilt noch immer: Mit dem EHT könnte man eine Apfelsine auf dem Mond erkennen.
Die Daten für alle bislang veröffentlichten Bilder stammen aus der ersten Beobachtungsrunde im Jahr 2017. Das nun veröffentlichte Bild von 3C279 war ein Nebenprodukt, weil die Messdaten schon zur Kalibrierung der ersten Aufnahme verwendet wurden. Das nächste größere Etappenziel der Forscher ist ein Bild des Schwarzen Lochs im Herzen der Milchstraße. Allerdings flackert es so stark, dass sich die Auswertung bislang als schwierig erweist. Die für dieses Frühjahr geplante Beobachtungskampagne musste wegen der Corona-Pandemie abgesagt werden. Doch die EHT-Forscher fangen gerade erst an, die Daten von 2018 auszuwerten. Vorerst haben sie also genug zu tun, bis es 2021 weitergehen soll, dann mit einem auf elf Teleskope erweiterten Netzwerk.
Christian Dauck: Ein vergleich, die 90er Jahre und 2019/2020
So sah das Bild 1995 in meinen ersten Buch über, Planeten, Galaxien und Steren aus:
1995: Künstlerische Darstellung. Zu jener Zeit galt die Existenz der erst theoretisch beschriebenen Schwarzen Löcher zwar als sehr wahrscheinlich, war aber noch nicht durch Beobachtungen bestätigt.2019: Ein reales Bild aus einer Beobachtung Dieses Bild wird diesen geheimnisvollen Phänomenen erst überhaupt gerecht um dem sich viele Mythen/Legenden ranken und Stoff zahlreicher Science-Fiction-Romane sind. Kein Wunder, sogar Licht und Zeit müssen sich ihnen beugen.
EHT beobachtet den Jet eines Schwarzen Lochs in der Galaxie 3C 279 mit bisher nicht erreichter Bildschärfe. Eine Pressemeldung des Max-Planck-Instituts für Radioastronomie, Bonn.https://www.mpg.de/14651902/jet-des-quasars-3c279-mit-eht
Das erste Bild eines schwarzen Lochs, das dem Event Horizon Telescope (EHT)gelungen war, gilt als wissenschaftliche Sensation. Jetzt, ziemlich genau ein Jahr später, legen die Forschenden dieser Kollaboration nach und präsentieren die Aufnahmen eines sogenannten Jets, der aus dem schwarzen Loch im Zentrum des Quasars 3C 279 heraussprüht. In bisher unerreichter Schärfe ist ein Strahl aus ionisiertem Gas zu sehen, den das Massemonster nahezu mit Lichtgeschwindigkeit ins All spuckt. Das internationale Team um Jae-Young Kim vom Bonner Max-Planck- Institut für Radioastronomie untersuchte die Gestalt des Plasmastrahls nahe seinerBasis, wo vermutlich hochenergetische und variable Gammastrahlung entsteht.
Als die EHT-Kollaboration im April 2017 das schwarze Loch im Zentrum der Galaxie M 87 beobachtete, nahm sie auch einige andere Objekte ins Visier. Dazu gehörte 3C 279 – ein rund fünf Milliarden Lichtjahre entferntes Milchstraßensystem im Sternbild Jungfrau. Wissenschaftler klassifizierten 3C 279 als quasi-stellares Objekt (Quasar), also als extrem kompakten und lichtstarken Kern einer Galaxie, der sehr große Energiemengen abstrahlt. Auch bei 3C 279 scheint diese aktive Zentralquelle ein schwarzes Loch mit der milliardenfachen Sonnenmasse zu sein.
Ein Teil der Materie, welche das schwarze Loch in der sogenannten Akkretionsscheibe umläuft, stürzt nach den Modellen der Astronomen nicht in die Schwerkraftfalle hinein, sondern wird in Form zweier stark gebündelter Plasmastrahlen – den Jets – mit nahezu Lichtgeschwindigkeit nach außen geschleudert. Tatsächlich werden solche Jets schon seit längerem beobachtet. Besonders die Technik der Very Long Baseline Interferometry, an deren Weiterentwicklung das Max-Planck-Institut in Bonn maßgeblich beteiligt war, lieferte dabei Bilder mit höchster Detailschärfe.
Die im EHT-Projekt verbundenen Teleskope haben die bisher erreichte Bildschärfe noch deutlich übertroffen und zeigen Details, die kleiner als ein Lichtjahr sind. Damit wird es möglich, den Jet bis heran an die erwartete Akkretionsscheibe zu verfolgen und die Wechselwirkung zwischen Scheibe und Jet zu beobachten. Dabei erscheint der normalerweise gerade verlaufende Jet an seiner Basis verdrillt. Und zum ersten Mal überhaupt werden Strukturen quer zur Jetrichtung sichtbar, die vermutlich Teile der Akkretionsscheibe sind.
Der Vergleich von Bildern, die an aufeinanderfolgenden Tagen aufgenommen wurden, zeigt deutlich, dass sich die Struktur verändert – vielleicht aufgrund des Einfalls und der Zerkleinerung von Materie auf eine rotierende Akkretionsscheibe nebst Ausstoß von Material in Form eines Jets. Ein solches Szenario kannte man bisher nur von Simulationsrechnungen.
„Wir haben erwartet, mit unserer superscharfen Aufnahme den Bereich abzubilden, in dem der Jet geformt wird. Wir konnten aber zusätzlich die senkrechte Struktur beobachten.“, sagt Jae-Young Kim. „Das ist, wie wenn man eine Matrjoschka-Puppe nach der anderen öffnet. Man glaubt zu wissen, was in der nächsten ist, und in der kleinsten findet sich eine Überraschung“.
Erstaunlicherweise ändern sich die Bilder auf sehr kurzer Zeitskala – und zwar nicht nur entlang des Jets, sondern auch quer dazu. „3C 279 war die erste bekannte astronomische Quelle, für deren Jet eine Bewegung mit scheinbarer Überlichtgeschwindigkeit nachgewiesen wurde“, sagt der Max-Planck-Astronom Thomas Krichbaum, der die Beobachtungen von 3C 279 als Projektleiter konzipiert hat. „Die jetzt beobachteten querverlaufenden scheinbaren Bewegungen mit fast 20-facher Lichtgeschwindigkeit lassen sich nur sehr schwer erklären, etwa mit wandernden Stoßfronten oder aber mit Instabilitäten in einem gekrümmten und vielleicht rotierenden Jet.“
Die an der Beobachtung im Jahr 2017 beteiligten Radioteleskope waren ALMA und APEX in Chile, das IRAM 30-Meter-Teleskop in Spanien, das James-Clerk-Maxwell-Teleskop und das Submillimeter-Array (beide Hawaii), das Large-Millimeter-Teleskop in Mexiko, das Submillimeter-Teleskop in Arizona sowie das Südpol-Teleskop. Die über den halben Globus verteilten Antennen waren mit der oben erwähnten Very Long Baseline Interferometry verbunden.
Diese Technik nutzt zudem die Rotation der Erde und bildet gleichsam ein virtuelles Radioteleskop von der Größe der Erde. Dessen Winkelauflösung würde es einem Astronauten auf dem Mond erlauben, auf der Erde eine einzelne Orange zu erspähen. Die Analyse, mit der die Rohdaten von den beteiligten Teleskopen zu einem Bild verbunden werden, erfordert spezielle Computer, Korrelatoren genannt. Diese befinden sich am Max-Planck-Institut für Radioastronomie in Bonn und am MIT-Haystack-Observatorium in den USA.
„Im vergangenen Jahr konnten wir der Welt das erste Bild vom Schatten eines schwarzen Lochs vorstellen. Nun sehen wir unerwartete Veränderungen in der Form des Jets von 3C 279, und wir sind noch längst nicht am Ziel angekommen“, sagt J. Anton Zensus, Max-Planck-Direktor und Vorsitzender des EHT-Kollaborationsrats. „Wir arbeiten weiterhin an den Daten von Sagittarius A*, der Zentralquelle unserer Milchstraße, und von anderen aktiven Galaxien. Wie wir im vergangenen Jahr schon betont haben: Das ist erst der Anfang!“
Die für März und April 2020 vorgesehene EHT-Beobachtungskampagne musste aufgrund des globalen CoViD-19-Ausbruchs abgesagt werden. Die EHT-Kollaboration legt im Moment die nächsten Schritte sowohl in Hinblick auf neue Beobachtungen, als auch auf die Analyse der bereits aufgenommenen Daten fest.
„Wir konzentrieren uns jetzt auf die Veröffentlichung der Daten von 2017 und starten mit der Analyse der Daten, die wir mit einem Teleskop mehr im Jahr 2018 aufgenommen haben“, sagt Michael Hecht, Astronom am MIT/Haystack-Observatorium und Vize-Direktor des EHT-Projekts. „Und wir planen die nächste Kampagne im März 2021, dann mit einem auf elf Observatorien vergrößerten Netzwerk.“
Hintergrundinformation: Die internationale EHT-Kollaboration hat am 10. April 2019 das erste Bild eines Schwarzen Lochs veröffentlicht, zustande gekommen durch Beobachtungen des innersten Bereiches der Radiogalaxie Messier 87 mit einem virtuellen Teleskop von nahezu der Größe der Erde. Unterstützt durch eine Reihe von internationalen Investitionen verbindet das EHT-Projekt bestehende Radioteleskope auf neuartige Weise und bildet so ein neues Instrument mit der besten bisher erreichten Winkelauflösung.
Die an der EHT-Kollaboration beteiligten Einzelteleskope sind zur Zeit: ALMA, APEX (beide in Chile), das IRAM-30m-Teleskop in Spanien, das IRAM-NOEMA-Observatorium in Frankreich (ab 2021), das Kitt-Peak-Teleskop (ab 2021), das James-Clerk-Maxwell-Teleskop (JCMT) und das Submillimeter Array (SMA), beide Hawaii, das Large-Millimeter-Teleskop (LMT) in Mexiko, das Submillimeter-Teleskop (SMT) in Arizona, das Südpol-Teleskop (SPT) direkt am Südpol, sowie das Grönland-Teleskop (GLT, seit 2018).
Das EHT-Konsortium setzt sich aus 13 projektbeteiligten Instituten zusammen: dem Academia Sinica Institute of Astronomy and Astrophysics, der University of Arizona, der University of Chicago, dem East Asian Observatory, der Goethe-Universität Frankfurt, dem Institut de Radioastronomie Millimétrique, dem Large Millimeter Telescope, dem Max-Planck-Institut für Radioastronomie, dem MIT Haystack Observatory, dem National Astronomical Observatory of Japan, dem Perimeter Institute for Theoretical Physics, der Radboud University Nijmegen und dem Smithsonian Astrophysical Observatory.
Von den Autoren der vorliegenden Veröffentlichung sind 37 Personen mit dem Max-Planck-Institut für Radioastronomie verbunden. In der Reihenfolge ihrer Nennung in der Autorenliste sind das: J.Y. Kim, T.P. Krichbaum, T.K. Savolainen, W. Alef, R. Azulay, A.K. Baczko, S. Britzen, R.P. Eatough, R. Karuppusamy, M. Kramer, R. Lico, K. Liu, A.P. Lobanov, R.S. Lu, N.R. MacDonald, K.M. Menten, C. Müller, A. Noutsos, G.N. Ortiz-León, E. Ros, H. Rottmann, A.L. Roy, L. Shao, P. Torne, T. Traianou, J. Wagner, N. Wex, R. Wharton, J.A. Zensus, U. Bach, S. Dornbusch, S.A. Dzib, A. Eckart, D.A. Graham, A. Hernández-Gómez, S. Heyminck, und D. Muders.
Jae-Young Kim, der Erstautor der Veröffentlichung, wird in diesem Jahr mit der Otto-Hahn-Medaille der Max-Planck-Gesellschaft ausgezeichnet, für Untersuchungen der innersten Strukturen und der Entstehung von Jets in der Umgebung supermassereicher Schwarzer Löcher bei hoher Auflösung. Die Otto-Hahn-Medaille wird verliehen in Anerkennung außergewöhnlicher Leistungen in der frühen Schaffensperiode junger Wissenschaftler.