Vor der Mission der VAE zum Mars laufen die letzten Kontrollen

Emiratische Ingenieure mit der Hope-Sonde im Reinraum des Hauptquartiers des Mohammed bin Rashid Space Center. 
Mit freundlicher Genehmigung von MBRSC

Beamte sagen, dass alle Systeme für den erwarteten Start am 15. Juli „go“ sind.

Die VAE sind der ersten arabischen Nation, die den Roten Planeten erreicht, einen Schritt näher gekommen.

Ingenieure sagten, die Hope-Sonde werde an ihrem Startort auf Tanegashima Island, Japan, einer Endkontrolle unterzogen, aber alle Systeme seien „in Betrieb“.

Sarah Al Amiri, Präsidentin der UAE Space Agency und stellvertretende Projektmanagerin der Emirates Mars Mission, sagte, der 15. Juli sei weiterhin der erwartete Starttermin.

Das wird wieder super, der Mars wieder im Mittelpunkt. Klar kann es im letzen Moment noch Probleme mit dem Wetter und der Technik geben aber letztendlich heben sie immer ab. Die VAE ist momentan der pünktlichste der drei Teilnehmer.

Da haben die USA und VAE ihre Raumsonden (Taggleich kann man schon sagen) auf die Rakete montiert und die USA brauchen ab da 23 Tage bis zum Start, unmöglich und total übertrieben. Japan nur 8 Tage ab dem Zeitpunkt bis zum Start.

Toll, was da die Vereinigten Arabischen Emirate leisten, da sollten sich alle Arabischen Länder, mal ein Beispiel dran nehmen was man sinnvolles machen könnte und in dem man investieren sollte.

Hoffentlich schaffen die VAE und China ihre Mars-Missionen, nur ESA, NASA, Roscosmos ist doch langweilig. Mehr Länder – Mehr Spannung, Spaß und noch mehr Raumfahrtprojekte. Um so schneller sind wir mit beiden beinen auf dem Mond und Mars.

Christian Dauck

„Das Raumschiff ist startbereit und alle Systeme befinden sich jetzt auf einem Niveau, das startbereit ist“, sagte sie in einer Pressekonferenz.

„Wir haben auch das Bodensegment und die Operationen in der Missionskontrolle überprüft und sie sind bereit, das Raumschiff nach dem Start zu akzeptieren.

„Derzeit werden die Endkontrollen sowohl für die Trägerrakete als auch für die Missionskontrolle durchgeführt. Wir sind bereit, wie geplant am 15. Juli früh am Morgen zu starten. “

Die Hope-Sonde dient zur Untersuchung der oberen und unteren Marsatmosphäre und benötigt sieben bis neun Monate, um den Roten Planeten zu erreichen.

Es wurde von einem Team von 150 Ingenieuren, Wissenschaftlern und Forschern aus den Emiraten gebaut, die an drei US-amerikanischen Universitäten arbeiten.

Die Sonde wird von einem in Japan gebauten Raketensystem namens H-IIA in den Weltraum befördert, das Geschwindigkeiten von mehr als 34.000 km / h erreichen kann. Das Raumschiff wird sich ungefähr eine Stunde nach dem Abheben von der Rakete trennen.

obald Hope die Schwerkraft der Erde verlassen hat, wird sie ihre Reise zum Mars unternehmen und 493,5 Millionen Kilometer zurücklegen. Wenn es die Umlaufbahn des Mars erreicht, wird es von etwa 121.000 km / h auf 18.000 km / h langsamer.

Von dort aus beginnt das Infrarotspektrometer, die Verteilung von Staub, Eiswolken und Wasserdampf zu messen, während eine hochentwickelte Bordkamera hochauflösende Bilder des Planeten aufnimmt.

Ein Ultraviolett-Spektrometer wird auch die obere Atmosphäre untersuchen und Spuren von Sauerstoff und Wasserstoff aufzeichnen.

Weitere Raumschiffe, die in den letzten Jahren zur Erforschung des Mars gestartet wurden, sind der Mars Reconnaissance Orbiter der NASA im Jahr 2005 und der Trace Gas Orbiter, ein Gemeinschaftsprojekt der russischen Weltraumagentur und der Europäischen Weltraumorganisation, das 2016 gestartet wurde.

Die Hope-Sonde der VAE wird sich jedoch in einer viel höheren Umlaufbahn als das vorherige Fahrzeug befinden, sodass breitere Bilder aufgenommen werden können. Wissenschaftler rechnen damit, dass alle 55 Stunden ein vollständiger Mars-Kreis gebildet werden kann.

Trotz des jüngsten nassen Wetters in Japan in den letzten Wochen sind die Ingenieure des Projekts weiterhin zuversichtlich, dass der Start planmäßig erfolgen wird.

https://www.thenational.ae/uae/science/final-checks-under-way-ahead-of-uae-s-mission-to-mars-1.1046595#3

Mondentstehung: Zwei Studien – Alter und Metallgehalt

Mond ist metallreicher als gedacht

Verborgene Ressourcen: Unter der Oberfläche des Mondes könnten sich mehr metallreiche Minerale verbergen als bislang angenommen. Indizien dafür liefern Messdaten, nach denen der Regolith in größeren und tieferen Mondkratern metallhaltiger ist als in kleineren. Das spricht dafür, dass der Metallgehalt des Mondgesteins mit zunehmender Tiefe steigt. Sollte sich dies bestätigen, wirft dies auch ein neues Licht auf die Entstehung des Mondes.

Die 2 Studien sind mal wieder ein ein gutes Beispiel, wie interessant und spanned die Raumfahrt ist. Kein Wissenschaftler, kein Lehrer und kein Buch auf der Welt kann uns sagen bzw. beantworten, wie unser Mond entstanden ist. Das ist schon krass.

Den Himmelskörper der uns am nächsten ist bzw, den wir direkt vor der Nase haben und Nachts sowie manchmal auch Tagsüber dutzende male gesehen haben. Der all gegenwärtig ist und auch Einfluss auf die Erde hat (Ebbe und Flut). Und das 2020 (21. Jahrhundert) noch andauert bei all der ganzen Modernen Technologie die wir auf den Mond, Asteroiden, Planeten schicken. Faszinierend und frustrierend zu gleich.

Immer nur ein vielleicht, könnte, dann wieder eine neue Theorie und wieder, könnte, vielleicht…. wie bei einem feißen Fleck auf der Landkarte. Obwohl das noch die einfachste Frage wäre, als die: Woher kommt das Leben auf der Erde/ gibt es Leben auf anderen Planeten.

Es bleibt weiterhin spannend und interessant.

Christian Dauck

Gängiger Theorie nach entstand der Mond durch eine katastrophale Kollision der jungen Erde mit dem marsgroßen Protoplanet Theia. Aus den verdampften Trümmern des ausgeschleuderten Materials bildete sich dann der Mond. Möglicherweise ist er der Erde deshalb geochemisch so ähnlich – er könnte vorwiegend aus irdischem Mantel- und Krustenmaterial bestehen. Wo allerdings dann die Überreste von Theia geblieben sind, ist bislang strittig.

Rätsel um Metallgehalt des Regoliths

Und noch ein Aspekt passt nicht ins Bild: Im lunaren Hochland enthält der Regolith weniger metallhaltige Minerale als vergleichbares irdisches Gestein – wie es bei einem Ursprung aus primär silikatreichem Mantelgestein der Erde zu erwarten wäre. Doch in den großen Maria des Mondes ist es genau anders herum: Dort enthalten einige Gesteine offenbar sogar mehr Metalle als ihre irdischen Gegenparts.

Wo aber kommt dieses Metall her? Eine mögliche Antwort könnten nun Forscher um Essam Heggy von der University of Southern California in Los Angeles gefunden haben. Denn ihre Studie liefert neue Hinweise auf die Beschaffenheit des lunaren Tiefgesteins. Dafür haben die Forscher Daten der NASA-Mondsonde Lunar Reconnaissance Orbiter (LRO) ausgewertet. Deren „Miniature Radio Frequency“-Instrument kann die dielektrische Leitfähigkeit des lunaren Regoliths messen und erlaubt damit Rückschlüsse darauf, wie viel Metall dieses Material enthält.

Überraschender Fund in lunaren Kratern

Die Analysen ergaben einen auffallenden Zusammenhang: Bei Mondkratern bis zu fünf Kilometer Durchmesser stieg die dielektrische Konstante des Regoliths mit der Kratergröße stetig an. Je größer der Krater, desto metallhaltiger wurde der Mondstaub am Kratergrund. Ab einem Durchmesser von fünf Kilometern jedoch scheint eine Art Plateau erreicht: Der Metallgehalt erhöhte sich auch bei zunehmender Kratergröße nicht mehr weiter.

„Dieser Verlauf war überraschend – wir hatten vorher keinen Grund anzunehmen, dass es diesen Zusammenhang gibt“, sagt Heggy. Doch was steckt dahinter? Die Forscher vermuten, dass dies mit der Wucht der Einschläge zu tun hat: Größere Brocken hinterlassen größere Krater, dringen aber auch tiefer in die Mondoberfläche ein. Ab einer bestimmten Größe wird dabei sogar Material aus dem lunaren Mantel ausgeschleudert, wie kürzlich Messungen eines chinesischen Mondrovers bestätigten.

Metallreicher in der Tiefe?

Das aber bedeutet: Am Grund der größeren Mondkrater findet sich Gestein aus den tieferen Schichten des Mondes – und dieses enthält offenbar mehr Eisen, Titan und andere Metalle als das meiste Oberflächengestein. „Die plausibelste Erklärung für die beobachtete Variabilität ist ein Anstieg des Metallgehalts mit der Tiefe, das heißt innerhalb der oberen Kilometer der Mondkruste“, sagen Heggy und seine Kollegen.

Die scheinbare Metallarmut des lunaren Regolith täuscht demnach: Unter seiner Oberfläche könnte der Erdtrabant deutlich metallreicher sein als bislang angenommen. An die Oberfläche gelangt dieses Material aber nur dort, wo entweder große Einschläge bis in diese Tiefen vorgedrungen ist oder aber wenn Lava aus dem Mondinneren metallhaltige Schmelzen ans Tageslicht brachte, wie in den Mondmaren.

Neue Sicht auf Mondentstehung

Sollte sich dies bestätigen, wirft dies auch ein neues Licht auf die Entstehung des Mondes. Denn dann bekam unser Trabant bei der katastrophalen Kollision vielleicht doch mehr als nur Mantel- und Krustentrümmer von der Erde mit. „Unsere Ergebnisse werfen die Frage auf, was dies für die gängigen Hypothesen zur Mondbildung bedeutet“, sagt Heggy. Tatsächlich könnten diese Funde eine Hypothese stützen, nach der die Erde bei der Kollision mit Theia sogar komplett verdampfte. Aus den Trümmern bildet sich dann erst die Erde neu, dann der Mond.

„Wenn wir herausfinden, wie viel Metall sich tatsächlich unter der Oberfläche des Mondes verbirgt, dann könnte dies helfen, die vielen Widersprüche zu klären und herauszufinden, wie sich der Mond gebildet und entwickelt hat“, so Heggy. Er und sein Team haben nun begonnen, noch weitere Krater auf dem Mond auf ihre Leitfähigkeit und ihren Metallgehalt zu untersuchen.

In jedem Fall unterstreichen diese Ergebnisse aufs Neue, dass der Mond noch lange nicht vollständig erforscht und verstanden ist. „Dieses aufregende Ergebnis zeigt, dass wir auch heute noch immer wieder neue Entdeckungen über die Vergangenheit unseres nächsten Nachbarn machen“, sagt Koautor Noah Petro vom Goddard Space Flight Center der NASA. (Earth and Planetary Science Letters, 2020; doi: 10.1016/j.epsl.2020.116274)

Quelle: NASA/ Goddard Space Flight Center, University of Southern California

Quelle: https://www.scinexx.de/news/kosmos/ist-der-mond-metallreicher-als-gedacht/

Der etwas jüngere Mond

Trabant der Erde fast 100 Millionen Jahre jünger als bisher angenommen

  • Der Trabant der Erde entstand aus den Trümmern, die bei der Kollision mit einem Protoplaneten aus der jungen Erde geschlagen wurden.
  • Dabei heizte sich der Mond so stark auf, dass er einen über tausend Kilometer tiefen Magmaozean bekam, der in 200 Millionen Jahren auskristallisierte.
  • Mit neuen Modellrechnungen konnten DLR-Planetologen und von der Universität Münster diese Ereignisse mit der Zeit der Mondentstehung in Verbindung setzen.
  • Sie fanden heraus, dass der Mond vor 4,425 Milliarden Jahren entstand, fast 100 Millionen Jahre später, als bisher angenommen.
  • Schwerpunkte: Planetenforschung, Planetengeophysik, Modellierung, Raumfahrt
Die Geburtsstunde des Mondes
Kaum dass das Sonnensystem vor 4,57 Milliarden Jahren entstanden war, hatten sich innerhalb weniger Zehnermillionen Jahre die Planeten entwickelt. Gleichzeitig vagabundierten noch viele Protoplaneten durch das junge Sonnensystem, die in manchen Fällen auf Kollisionskurs mit den jungen Planeten gerieten. Auch die Erde wurde vor 4,425 Milliarden Jahren von einem dieser Protoplaneten getroffen. Es war die Geburtsstunde des Mondes, die Wissenschaftler vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) und der Westfälischen Wilhelms-Universität Münster nun mit Modellrechnungen ermitteln konnten. Damit ist der Mond etwas jünger, als bisher angenommen. Der einschlagende Protoplanet könnte die Größe des Planeten Mars gehabt haben und schleuderte enorme Mengen an Gestein des Erdmantels, das teilweise sogar verdampfte, ins All. Aus diesen Bestandteilen entstand in wenigen Tausend Jahren der Mond.

Die Geburtsstunde des Mondes schlug etwas später, als bisher vermutet. Sie ereignete sich, als ein marsgroßer Protoplanet bei der Kollision mit der jungen Erde zwar zerstört wurde, aber aus den Trümmern dieser Katastrophe ein neuer Körper entstand – der Mond. Planetengeophysiker um Maxime Maurice vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) und der Westfälischen Wilhelms-Universität Münster (WWU) haben nun mit einem neuen numerischen Modell rekonstruiert, wann dies geschah: vor 4,425 Milliarden Jahren. Die bisherigen Annahmen für die Entstehung des Mondes gingen von 4,51 Milliarden Jahren aus, also 85 Millionen Jahre früher als jetzt berechnet. Der Mond ist also fast 100 Millionen Jahre jünger, als bisher angenommen. Davon berichten die Wissenschaftler heute im Wissenschaftsmagazin Science Advances.

Das Sonnensystem war vor viereinhalb Milliarden Jahren noch eine ziemlich chaotische Welt. Die Erde wuchs gerade zu ihrer heutigen Größe heran: Der Planet, auf dem wir heute leben, sammelte noch immer Materie in Form von so genannten ‚Planetesimalen‘ auf, die sich zuvor in der die junge Sonne umkreisenden Scheibe aus Staub und Gas gebildet hatten. Die junge Erde konsolidierte, dabei wurde sie in ihrem Inneren ständig heißer. Immer größere Anteile des Gesteinsmantels schmolzen auf und bildeten einen Magmaozean. Zu jener Zeit bekam die Erde auch ihren Trabanten, der sie bis heute umkreist. Er ist das Ergebnis einer gewaltigen kosmischen Kollision der Erde mit einem Protoplaneten, bei dem Gestein aus der jungen Erde herausgeschleudert wurde und sich zu einem neuen planetaren Körper zusammenballte, dem Mond.

Über die Entstehungsgeschichte sind sich die meisten Wissenschaftler im Prinzip zwar einig, nicht aber über den Vorgang im Einzelnen und vor allem nicht über den Zeitpunkt. „Das Ergebnis unserer Modellierungen legt nahe, dass die junge Erde rund 140 Millionen Jahre nach der Geburt des Sonnensystems vor 4,567 Milliarden Jahren von einem Protoplaneten getroffen wurde. Das geschah nach unseren Berechnungen vor 4,425 Milliarden Jahren – mit einer Unsicherheit von 25 Millionen Jahren,“ fasst Maxime Maurice vom Berliner DLR-Institut für Planetenforschung und Erstautor der Studie die Untersuchungen zusammen. „Das war die Geburtsstunde des Mondes.“

Die Entwicklung der Erde zu einem Planeten war zu diesem Zeitpunkt gerade abgeschlossen. In deren Verlauf sanken im Inneren der Erde die schweren, metallischen Bestandteile ins Zentrum und bildeten einen Kern aus Eisen und Nickel, der nun von einem mächtigen Mantel aus silikatischen Gesteinen umgeben war. Die Mantelgesteine wurden durch die ‚Akkretion‘, dem Zusammenballen der Materie, und der Wärme aus dem Zerfall radioaktiver Elemente immer heißer, so dass eine Trennung von Metall und Silikat im Inneren der Erde innerhalb von einigen Zehnermillionen Jahren stattfinden konnte.

Ein planetarer Volltreffer als Geburtsstunde des Mondes

In diesem Stadium wurde die Erde von einem vielleicht marsgroßen Protoplaneten getroffen, der unter dem Namen Theia in der Sonnensystemforschung kursiert; Theia ist in der griechischen Mythologie eine der Titaninnen und die Mutter der Mondgöttin Selene. In der Frühzeit des Sonnensystems dürften zahlreiche Körper dieser Art existiert haben: Zum Teil wurden sie aus dem Sonnensystem hinausgeschleudert, oder aber sie wurden durch Kollisionen mit anderen Körpern zerstört. Theia indes traf die Erde mit voller Wucht und schleuderte so viel Material aus dem Erdmantel, dass sich daraus der Mond formen konnte. Bei diesem heftigen Aufprall bildete sich auf der frühen Erde ein Magmaozean aus glühend heißem, geschmolzenen Gestein von mehreren tausend Kilometern Tiefe. Von Theia gibt es nach dieser gewaltigen Kollision heute keine Spuren mehr, die man nachweisen könnte.

Magmaozean und erste Gesteinskruste auf dem Mond
Während sich der Mond vor 4,425 Milliarden Jahren zu einer Kugel von etwa 1700 Kilometer Durchmesser formte, heizte sich sein Inneres durch die Energie, die beim Zusammenballen frei wurde stark auf. Das Gestein schmolz und es bildete sich ein möglicherweise mehr als tausend Kilometer tiefer Ozean aus Magma. Später bildeten sich leichte Gesteine, die an die Oberfläche aufschwammen und eine erste Kruste auf dem Mond bildeten. Diese Kruste isolierte den Mond gegenüber dem Weltall ab, so dass der Magmaozean darunter nur langsam abkühlte. Erst nach etwa 200 Millionen Jahren war der Mond vollständig erstarrt.

Um die bei diesem Ereignis ausgelöste Entstehung des Mondes nachvollziehen zu können, erfordert es einiges an Vorstellungsvermögen und Phantasie: Die Kollision der beiden Körper verdampfte mit ihrer gewaltigen Energie auch eine riesige Menge an Gestein aus dem frühen Erdmantel. Es wurde herausgeschleudert und sammelte sich in einem Ring aus Staub um die Erde, ehe es sich dort wieder zu Gestein zusammenballte. „Daraus entstand in kurzer Zeit, in vermutlich nur wenigen Tausend Jahren, der Mond“, erklärt Professorin Doris Breuer vom DLR und Co-Autorin der Studie.

Das älteste Mondgestein ist nicht alt genug

Über die Entstehungsgeschichte des Mondes herrscht unter Wissenschaftlern weitgehend Einigkeit. Allerdings konnten sie bis jetzt die Entstehung des Mondes nicht genau datieren, da es keine von den Astronauten der sechs Apollo-Missionen und den drei robotischen sowjetischen Luna-Missionen zur Erde gebrachten Mondgesteine gibt, die das Entstehungsalter des Erdtrabanten direkt konservieren. Mithilfe einer neuen, indirekten Methode haben die Forscher vom DLR und der WWU rekonstruiert, wann der Mond entstanden ist. „Unsere Berechnungen zeigen, dass dies höchstwahrscheinlich ganz am Ende der Erdentstehung geschah“, schildert Sabrina Schwinger, eine weitere Co-Autorin der Studie den zeitlichen Ablauf.

Nicht nur die Erde hatte in ihrer frühen Jugend einen Magmaozean. Auch im jungen Mond konnte sich durch Akkretionsenergie ein Magmaozean entwickeln. Der Mond schmolz fast vollständig auf und wurde, wie auch die Erde, von einem möglicherweise über tausend Kilometer tiefen Magmaozean bedeckt. Dieser Magmaozean begann zwar schnell zu kristallisieren und bildete an der Oberfläche, der ‚Schnittstelle‘ zum kalten Weltall, eine Mondkruste aus aufschwimmenden leichten Kristallen. Aber unter dieser isolierenden Kruste, die das weitere Abkühlen und Auskristallisieren des Magmaozeans bremste, blieb der Mond noch lange geschmolzen. Bisher konnten Wissenschaftler nicht feststellen, wie lange es dauerte, bis der Magmaozean vollständig kristallisiert war – weshalb sie auch nicht ausmachen konnten, wann sich der Mond ursprünglich bildete.

Für die Berechnung der Lebensdauer des Magmaozeans des Mondes verwendeten die Wissenschaftler in ihrer aktuellen Studie ein neues Computermodell, das erstmals die Vorgänge bei der Kristallisation des Magmaozeans umfassend berücksichtigte. „Die Ergebnisse des Modells zeigen, dass der Magmaozean des Mondes langlebig war und es fast 200 Millionen Jahre dauerte, bis er vollständig zu Mantelgestein auskristallisierte“, betont Maxime Maurice. „Die Zeitskala ist viel länger als in früheren Studien berechnet“, ergänzt DLR-Kollege Dr. Nicola Tosi, zweiter Autor der Studie und Betreuer der Doktorarbeit von Maxime Maurice, deren Ergebnis in dieser Studie zusammengefasst ist. „Ältere Modelle gingen von einer Kristallisationsdauer von nur 35 Millionen Jahre aus.“

Kristallisationsmodelle zeigten das Alter des Mondes – und der Erde

Um auch das Alter des Mondes zu bestimmen, mussten die Wissenschaftler noch einen Schritt weitergehen. Sie berechneten, wie sich die Zusammensetzung der magnesium- und eisenreichen Silikatmineralien, die sich während der Kristallisation des Magmaozeans bildeten, mit der Zeit veränderte. Das Ergebnis: Die Forscher stellten eine kontinuierliche Veränderung der Beschaffenheit des verbleibenden Magmaozeans im Laufe der fortschreitenden Kristallisation fest. Diese Erkenntnis ist von Bedeutung, da die Autoren so die Bildung verschiedener Gesteine vom Mond mit einem bestimmten Stadium in der Entwicklung seines Magmaozeans in Verbindung bringen konnten. „Durch den Vergleich der gemessenen Zusammensetzung der Mondgesteine mit der vorhergesagten Zusammensetzung des Magmaozean aus unserem Modell konnten wir die Entwicklung des Ozeans bis zu seinem Ausgangspunkt, dem Entstehungsalter des Mondes, zurückverfolgen“, erklärt DLR-Planetenforscherin Sabrina Schwinger.

Die Ergebnisse der Wissenschaftler zeigen, dass der Mond vor 4,425±0,025 Milliarden Jahren entstanden ist. Dieses genaue Alter des Mondes stimmt bemerkenswert gut mit einem zuvor aus dem Verhältnis von irdischen Uran- und Bleiisotopen bestimmten Alter für die Bildung des metallischen Erdkerns überein, mit dem die Entstehung des Planeten Erde ihren Abschluss fand. „Es ist das erste Mal, dass das Alter des Mondes direkt mit einem Ereignis in Verbindung gebracht werden kann, das ganz am Ende der Erdentstehung passierte, nämlich der Entstehung des Kerns der Erde“, betont Prof. Dr. Thorsten Kleine vom Institut für Planetologie in Münster.

Förderung:
Die Arbeiten wurden im Rahmen des Sonderforschungsbereichs Transregio 170 „Späte Akkretion auf terrestrischen Planeten“ und der Helmholtz-Nachwuchsgruppe „Early Dynamics of the terrestrial planets“ durchgeführt und von der Deutschen Forschungsgemeinschaft und der Helmholtz-Gemeinschaft gefördert.


Originalpublikation:
M. Maurice, N. Tosi, S. Schwinger, D. Breuer, T. Kleine (2020). A long-lived magma ocean on a young MoonScience Advances; DOI: 10.1126/sciadv.aba8949

Quelle: https://www.dlr.de/content/de/artikel/news/2020/03/20200710_der-etwas-juengere-mond.html

WIE KOMMT DAS GANZE METALL AUF DEN MOND?

Eine neue Studie zeigt: der Mond ist voller Metall. Damit stellt die Untersuchung die bisherigen Erkenntnisse über die Mondentstehung in Frage. Bisher wurde angenommen, dass der Mond aus einer Kollision mit der Erde entstand. Doch die lief vermutlich anders ab, so die Forscher. Denn sonst gäbe es keine Erklärung für das ganze Metall.

Der Mond und die Erde sind ein seltsames Paar. Die Menschen verehren ihn und ohne ihn würde es die Menschheit wohl nicht geben. Denn er hält die Erde in einer stabilen Neigung. Wie der Erdtrabant aber entstanden ist, darüber scheiden sich die Geister. Eine neue Studie zeigt: Es war alles wohl ganz anders als gedacht. Zumindest muss das Mondmetall irgendwoher kommen. 

Eine weitverbreitete These besagt, dass der Mond durch eine Kollision entstanden sei. Der marsgroßer Protoplanet Theia sei mit der jungen Erde zusammengestoßen. Dabei gelangte ein großer Teil der Erdkruste ins Weltall. Aus dieser Schicht, die nun in der Umlaufbahn umherschwirrte, bildete sich allmählich der Mond.  

Einen großen Haken hat diese Hypothese jedoch: Die neusten Untersuchungen des Lunar Reconnaissance Orbiter (LRO) der US-amerikanischen Raumfahrtbehörde NASA zeigen, dass der Staub am Boden der Mondkrater metallhaltig ist. Dieses Material kann aber nicht von der Erde stammen. Denn auf unserem Heimatplaneten befinden sich solche Metalle erst in den tieferen Erdschichten. Bei der Kollision mit Theia wäre aber nur die obere Erdkruste ins Weltall gelangt.  

MOND: MEHR EISENOXID ALS AUF DER ERDE?

Auf dem Mond gibt es aber sehr viel Eisenoxide. Die Konzentration ist sogar höher als auf der Erde. Diese Erkenntnis ist für Wissenschaftler nicht neu. Doch wie kommt das ganze Metall auf den Mond? Dieser Frage hat sich das Team um Nasaforscher Essam Heggy gestellt. Gemeinsam haben sie die Ergebnisse des Miniatur-Radiofrequenz-Instrumentes an Bord des Mond-Orbiters LRO untersucht. 

Es ist möglich, dass die Diskrepanz zwischen der Eisenmenge auf der Erdkruste und dem Mond noch größer sein könnte, als von Wissenschaftlern angenommen, was das derzeitige Verständnis der Entstehung des Mondes in Frage stellt.University of Southern California

Die Kraterlandschaft des Mondes können wir mit dem bloßen Auge von der Erde aus erkennen. Diese Krater entstanden durch Meteoriteneinschläge. Je nach Größe und Geschwindigkeit der Meteoriten sind einige Krater größer und tiefer als andere. Dennoch haben die Einschläge eines gemeinsam: sie dringen in die Mondoberfläche ein. Dabei werden Materialien aus den unteren Mondschichten nach oben gedrückt.Aufgehende Erde – fotografiert vor der Landung aus dem Mondorbit der Apollo 11-Mission, 1969.Bildrechte: NASA / Apollo 11 Mission

„Beim Vergleich des Metallgehalts am Boden größerer und tieferer Krater mit dem der kleineren und flacheren Krater stellte das Team höhere Metallkonzentrationen in den tieferen Kratern fest.University of Southern California“

DREI MÖGLICHE ERKLÄRUNGEN ZUM MONDMETALL

Die Forscher haben drei mögliche Erklärungen parat, denen sie auf den Grund gehen wollen. Zum einen kann es sein, dass die die Kollision mit Theia für unsere frühe Erde verheerender war als angenommen. Durch den Zusammenstoß wären viel tiefere Abschnitte aus der Erdoberfläche in die Umlaufbahn gelangt. Theia hätte nicht nur an der Erdkruste gekratzt.

Zum anderen könnte es sein, dass die Kollision zwischen Theia und der Erde viel früher stattgefunden hat. Die Erde müsste zu diesem Zeitpunkt noch sehr jung gewesen sein. So jung, dass sie von einem Magma-Ozean bedeckt war. Dadurch könnte flüssiges Metall in den Weltraum gelangt sein. Dieses hätte sich dann gemeinsam mit anderen Materialien zum heutigen Mond geformt.

Ebenso wäre es möglich, das die noch heiße Mondoberfläche anders abgekühlt sei, als angenommen. Das viele Metall deutet zumindest auf einen komplizierten Abkühlungsprozess der geschmolzene Mondoberfläche hin.

WEITERE UNTERSUCHUNGEN FOLGEN
Für den Hauptforscher am Miniatur-Radiofrequenz-Instrumentes des Lunar Orbiter sind die neuen Erkenntnisse großartige Neuigkeiten. Wes Patterson ist froh darüber, dass „die LRO-Mission uns immer wieder mit neuen Einsichten in die Ursprünge und die Komplexität unseres nächsten Nachbarn überrasche.“

Somit war dies nicht der letzte Einsatz des Miniatur-Radiofrequenz-Instruments. Die Kraterböden des Mondes sollen auch in Zukunft mit weiteren Radarmessungen beobachtet werden. Dadurch könnten die ersten Ergebnisse der Studie um Heggys Team überprüft werden und man würde neue Erkenntnisse über den Erdtrabanten erhalten.

Die Studie ist unter dem Titel „Bulk composition of regolith fines on lunar crater floors: Initial investigation by LRO/Mini-RF“ in Earth and Planetary Science Letters erschienen.

Quelle: https://www.mdr.de/wissen/umwelt/woher-kommt-das-ganze-metall-auf-dem-mond-100.html