TESS: Zweite erdähnliche Welt um nahen Zwergstern – Neuentdeckter Exoplanet TOI-700e könnte lebensfreundlich sein

Der neuentdeckte Exoplanet TOI-700e ist knapp so groß wie die Erde und könnte ein warmes, lebensfreundliches Klima haben. © NASA/JPL-Caltech, Robert Hurt

Erdzwillinge im Doppelpack: Astronomen haben einen zweiten potenziell lebensfreundlichen Planeten um den Roten Zwerg TOI-700 entdeckt. Der rund 100 Lichtjahre entfernte Exoplanet ist fast so groß wie die Erde und kreist am Rand der habitablen Zone seines Sterns. Dieser gehört damit zu den wenigen Sternen mit gleich mehreren habitablen Welten. Seine beiden Erdzwillinge bieten zudem beste Möglichkeiten für genauere Beobachtungen beispielsweise mit dem James-Webb-Weltraumteleskop.

Astronomen haben inzwischen tausende von extrasolaren Planeten entdeckt, darunter auch viele erdähnliche Gesteinsplaneten um nahe Sterne wie Proxima Centauri und TRAPPIST-1. Im Jahr 2020 spürte dann das NASA-Weltraumteleskop TESS einen nahezu perfekten Erdzwilling in unserer Nähe auf: Der Planet TOI-700d ist etwa erdgroß und umkreist einen rund 100 Lichtjahre entfernten Roten Zwerg mitten in der habitablen Zone. Er könnte daher anders als die beiden anderen Planeten dieses Systems ein mildes Klima und flüssiges Wasser auf seiner Oberfläche aufweisen.

Transit-Signal
Illustration des Planeten TOI-700e und die von TESS während seines Transits aufgezeichnete Lichtkurve.© NASA/JPL-Caltech, NASA/GSFC, Robert Hurt

Transit-Signal eines vierten Planeten

Jetzt zeigt sich: Der Erdzwilling TOI-700d ist nicht die einzige potenziell lebensfreundliche Welt um seinen Stern. Um das Planetensystem genauer zu charakterisieren hatten Emily Gilbert vom Jet Propulsion Laboratory der NASA und ihre Kollegen noch einmal neuere Daten des TESS-Teleskops für TOI-700 ausgewertet. Dabei entdeckten sie in der Lichtkurve des Roten Zwergs neben den drei periodischen Abschattungen durch die schon bekannten Planeten noch ein weiteres, deutlich schwächeres Signal.

Nähere Analysen enthüllten: Es handelt sich um das Transit-Signal eines weiteren, zuvor übersehenen Planeten. Dieser TOI-700e getaufte Planet kreist zwischen dem Erdzwilling TOI-700d und seinem inneren, größeren Nachbarn TOI-700c. „Wenn der Stern nur ein wenig näher oder der Planet ein wenig größer gewesen wäre, hätten wir TOI-700e wahrscheinlich schon im ersten Jahr von TESS gefunden“, sagt Gilbert. „Aber das Signal war so schwach, dass wir noch ein weiteres Jahr der Transitbeobachtungen brauchten.“

habitable Zone
Orbits der vier Planeten um TOI-700 in Bezug zur habitablen Zone.© NASA/GSFC

Erdähnlich und potenziell habitabel

Das Spannende am neuen Fund: Der neu entdeckte Exoplanet hat 95 Prozent der Erdgröße und ist daher wahrscheinlich ein erdähnlicher Gesteinsplanet. Zudem umkreist er seinen Stern in knapp 28 Tagen einmal und liegt damit noch in der habitablen Zone dieses Roten Zwergsterns. Den Schätzungen der Astronomen zufolge erhält der Planet das 1,27-Fache der irdischen Sonneinstrahlung von seinem Stern – er ist daher etwas wärmer als die Erde.

Damit wäre aber ein gemäßigtes Klima mit flüssigem Wasser auf TOI-700e noch durchaus möglich: „Die Einstrahlung bei TOI-700e liegt zwischen der Erde und der der Venus“, berichten Gilbert und ihr Team. Das mache diesen Planeten besonders spannend. Denn bisher ist strittig, ob die Venus einst ein lebensfreundliches Klima hatte oder doch von Beginn an eine „Dampfhölle“ war. „Das TOI-700-System bietet nun eine Chance, die Venusfrage an vergleichbaren Exoplaneten zu klären“, so die Astronomen.

Spannender Kandidat für weitere Forschung

In jedem Fall umfasst das System von TOI-700 nun gleich zwei Planeten, die potenziell lebensfreundliche Bedingungen bieten und erdähnlich sind. „Damit ist dies eines von nur wenigen Systemen mit mehreren kleinen Planeten in der habitablen Zone“, sagt Gilbert. Ergänzende Beobachtungen mit dem Hubble-Weltraumteleskop erbrachten zudem keine Hinweise auf starke Strahlenausbrüche vom Roten Zwerg. Weil solche stellaren Flares harte Röntgenstrahlung freisetzen, gelten sie als schlechte Voraussetzung für lebensfreundliche Bedingungen.

„All dies macht das TOI-700-System zu einem spannenden Kandidaten für weitere Beobachtungen“, sagt Gilbert. Das TESS-Teleskop wird den Stern und seinen vier Planeten in diesem Jahr noch einmal eingehender ins Visier nehmen. Zudem sind auch schon weitere Beobachtungen mit erdbasierten Teleskopen geplant. (241st meeting of the American Astronomical Society, 2023; Astrophysical Journal Letters, accepted; arXiv:2301.03617)

Quelle: NASA

Quelle: https://www.scinexx.de/news/kosmos/zweite-erdaehnliche-welt-um-nahen-zwergstern/

Grazer Weltrauminstitut: Meilenstein bei der Suche nach außerirdischem Leben

Es wäre womöglich die größte wissenschaftliche Entdeckung der Geschichte, und wenn es nach der ehemaligen Wissenschaftschefin der Nasa, Ellen Stofan, geht, könnte es bereits in wenigen Jahren so weit sein. Sie prognostizierte bei einer Podiumsdiskussion 2015, dass es bereits 2025 starke Hinweise auf Leben im All geben sollte, mit definitiven Beweisen in den folgenden Dekaden.

Es handelte sich um eine kühne Prognose, die eine mehrjährige Verzögerung des James-Webb-Teleskops noch nicht einkalkuliert hatte. Die Verspätung kann getrost zu ihrer Prognose hinzuaddiert werden, denn auch wenn Webb nicht die einzige Möglichkeit ist, Leben im All zu entdecken, kommt ihm doch eine Schlüsselrolle zu. Mit dem neuen Teleskop, das im Infrarotbereich arbeitet, lassen sich die Atmosphären fremder Planeten in nie dagewesener Qualität analysieren.

Das Spektrum des Planeten Wasp-39b. Der „Peak“ des Schwefeldioxids ist gut erkennbar. Wer genau hinsah, konnte ihn schon in der ersten Veröffentlichung zur Entdeckung von CO2 in der Atmosphäre des Planeten entdecken.

In der ersten Phase der Veröffentlichungen spektakulärer, bunter Himmelsphänomene gingen die sonderbaren, gezackten Kurven der Exoplanetenanalysen Webbs beinah unter. Doch sie demonstrierten bereits die erhoffte Fähigkeit des Teleskops, detaillierte Untersuchungen von fernen Planeten durchzuführen.

Doch nachdem bereits im August beim 700 Lichtjahre entfernten Planeten Wasp-39b, der als eine Art Modellsystem für die Forschungen mit Webb fungiert, erstmals Kohlendioxid in der Atmosphäre eines Exoplaneten festgestellt wurde, entdeckten die Forschenden nun neben Natrium, Kalium, Wasser, Kohlenstoffmonoxid und Kohlenstoffdioxid auch einen seltsamen Ausschlag der Kurve, der die Existenz von Schwefeldioxid belegt, wie eine internationale Forschungskooperation unter Mitwirkung von Patricio Cubillos, Ludmila Carone und Katy Chubbzur vom Institut für Weltraumforschung (IWF) der Österreichischen Akademie der Wissenschaften in Graz nun in Fachjournalen erschienenen Studien darlegte.

Webb ist für diese Forschung deshalb so effektiv, weil es eine große Bandbreite an Wellenlängen im Infraroten bis hin zum sichtbaren Spektrum abdeckt. „Das ist ein Novum und ein großer Schritt vorwärts in der Geschichte der Exoplanetenforschung. Denn so eine große Abdeckung in hoher Auflösung erlaubt es uns, die Chemie von Exoplaneten-Atmosphären in ihrer Gesamtheit zu erfassen“, sagt Carone. Deshalb gelang auch die Auflösung des überraschenden „Peaks“ in der Kurve neben dem bereits bekannten Signal für CO2. „Man sah auf einmal ein Molekül mehr als erwartet“, zeigt sich auch IWF-Direktorin Christiane Helling begeistert.

Woher stammt das Schwefeldioxid?

Das stellte aber erstmal ein Rätsel dar. Schwefeldioxid wäre in einer Atmosphäre wie jener der Venus zu erwarten, die von Kohlendioxid dominiert wird. In einer Atmosphäre mit viel Wasserstoff und Helium sollte sich Schwefeldioxid gar nicht bilden.

Genau nach solchen widersprüchlichen Signalen sucht die Forschung. Kann die Existenz einer Chemikalie in der Atmosphäre nicht durch normale physikalische Prozesse erklärt werden, müssen andere Erklärungen in Betracht gezogen werden, etwa die Existenz von Leben. Fallen alle andern Erklärungen weg, muss die übriggebliebene, wie unwahrscheinlich sie auch wirken mag, die Wahrheit sein, um es in den Worten von Sherlock Holmes zu sagen.

Die Erde ist ein solcher Fall: Die großen Mengen von molekularem Sauerstoff, etwa 21 Prozent, sind durch planetare Prozesse nicht erklärbar. Sauerstoff ist hoch reaktiv und würde schnell durch Oxidation aus der Atmosphäre gebunden.

Ein mehrstufiger Prozess wandelt in dem Exoplaneten Wasp-39b Schwefelwasserstoff zu Schwefeldioxid um.

Wasp-39 b ist allerdings kein typischer Kandidat für außerirdisches Leben. Es handelt sich um einen Gasriesen mit Ähnlichkeiten zu Saturn, der äußerst nah an seinem Stern vorbeizieht, und zwar näher als Merkur an unserer Sonne. Das geht mit hohen Temperaturen von mehreren hundert Grad einher. Wasp-39b ist also weit außerhalb der sogenannten habitablen Zone, in der mit flüssigem Wasser zu rechnen ist, das als Voraussetzung für Leben in der uns bekannten Form gilt.

Erklärung gefunden

Tatsächlich konnten Forschende vom Institut für Weltraumforschung eine andere Erklärung finden, die sie nun zur Publikation einreichten und als Preprint veröffentlichten. Demnach könnte Wasser eine Rolle bei der Bildung des Schwefeldioxids gespielt haben, das unter Einfluss des Sternenlichts Schwefelwasserstoff in Schwefeldioxid verwandelte. Für diese Analyse bedurfte es detaillierter Atmosphärenmodelle, die zum Teil von Patricio Cubillos und Ludmila Carone vom IWF beigesteuert wurden.

Die Entdeckung von Leben auf einem fremden Planeten wurde also vorerst abgesagt. Sie übt als mögliche Jahrhundertentdeckung auf die breite Öffentlichkeit eine besondere Faszination aus, doch für die Forschenden ist dieser unsichere Hauptgewinn beileibe nicht das einzige Ziel. Nachdem der Prozess um die Entstehung des Schwefeldioxids geklärt ist, interessieren sie sich besonders für den Ursprung der Ausgangssubstanz, des Schwefelwasserstoffs.

„Wir haben es hier mit Zeitzeugen aus der fernen Vergangenheit zu tun, welche es jetzt weiter zu untersuchen gilt. Das IWF wird auf jeden Fall auch bei dieser Reise in die Vergangenheit entscheidend mitwirken“, betont die IWF-Direktorin.

Angesichts der Demonstration der Fähigkeiten von Webb, Einblicke in komplexe chemische Vorgänge in den Atmosphären fremder Planeten zu liefern, darf man jedenfalls auf die nächsten Ergebnisse Webbs zu Exoplaneten gespannt sein. Spätestens wenn, wie im Fall der Entdeckung von Gravitationswellen oder des ersten Bildes eines Schwarzen Lochs, die Präsentation „neuer, aktueller Entwicklungen“ im Forschungsgebiet angekündigt wird, lohnt es sich, die Uhrzeit für die Präsentation in den Kalender einzutragen und ausreichende Mengen an Popcorn einzukaufen. Es könnte sich um die größte Entdeckung der Menschheit handeln. (Reinhard Kleindl, 26.11.2022)

Quelle: https://www.derstandard.de/story/2000141174652/grazer-weltrauminstitut-meilenstein-bei-der-suche-nach-ausserirdischem-leben

Astrobiologie: Email an Wissenschaftler in den USA: Anfrage zu Enceladus und Trappist 1e Beobachtung mit James Webb

Saturnmond Enceladus

Hab diese Woche Wissenschaflter in den USA per Email gefragt, wann den Enceladus und Trappist 1e mit dem JWST Beobachtet werden und wie sich ein schwer zu bewegenes Filterrad auf die beobachtung auswirkt.

Ich freue mich sehr über die Antworten, vor allem weil es mir nur mit dem Google-Übersetzer möglich ist und ich überhaupt nicht wusste wie ich dadurch auf der anderen Seite der Erde sprachlich rüber komme wenn eine Maschine dazwischen ist.

Toll von Menschen zu hören bei dem die Vorfreude ja enorm sein muss und sich auch für Astrobiologie interessieren. Toll das Sie sich Zeit genommen haben. Ist ja anders als für Deutsche Wissenschaftler, für uns interessierte Privatpersonen als nicht Wissenschaftler in Astrobiologie und Raumfahrt, kein Tagegeschäft. Vor allem wen man dazu kein Englisch sprechen und schreiben kann.

Mond Titan, Eismonde, Exoplaneten, Perseverance auf dem Mars, die frage ist doch gar nicht mehr ob wir leben finden können sondern wo zu erst. So viele vielversprechende Kandidaten unter den Eismonden und Exoplaneten und darüber hinaus

Ganz vielen lieben dank aus Deutschland an Geronimo Villanueva und Nikole. K Lewis in die USA


Meine Nachricht mit Hilfe des Googel-Übersetzer:

Dear Sir Geronimo Villanueva, 

I am Asperger’s autistic and interested in Astrobiology.

Can you tell when the observation of the icy moons Enceladus and Europa will start and end?

Can you name an approximate time window for the observations?

-Enceladus

-Europa

The Webb team has paused observations using the medium-resolution spectroscopy mode after detecting „increased friction.“

Does that delay the planned observations?

My anticipation for the JWST observation of the icy moons Enceladus and Europa is very high.

Kind regards

Christian


Antworten:

Trapist 1e:

Dear Christian – Nice to meet you. The TRAPPIST-1e observations are currently tentatively scheduled in June and October of 2023. This may change, but I’ll note that you can see when any JWST program is scheduled using the program information tool:
 
https://www.stsci.edu/jwst/science-execution/program-information.html?id=1331
 
And click on the “Visit Status Information” link.
 
Our planned TRAPPIST-1e observations do not use the MIRI instrument (they will use the NIRSpec instrument), so the issue detailed here:
 
https://blogs.nasa.gov/webb/2022/09/20/mid-infrared-instrument-operations-update/
 
does not affect our observations.

K. Lewis

Enceladus:

Dear Christian,

The observations are now being planned to take place in October, November and in December. Several orbital restrictions and observatory operational and scheduling restrictions will define on which specific dates the different observing blocks will take place.

At this stage, the MRS observations are not being planned, and will take place once the issues with the instrument are resolved.

Best,
Geronimo


„Fast alle Bausteine für Leben“: Phosphor auf Saturnmond Enceladus gefunden

„Fast alle Bausteine für Leben“: Phosphor auf Saturnmond Enceladus gefunden

n dem Ozean unter der Oberfläche des Saturnmonds Enceladus gibt es mit Phosphor offenbar eine weitere wesentliche Zutat für Leben, so wie wir es kennen. Das hat eine Forschungsgruppe anhand von Daten der Saturnsonde Cassini und verbesserte Modelle herausgefunden. Dabei habe man herausgefunden, dass der dort austretende Dampf „fast alle Grundvoraussetzungen für Leben enthält“, ordnet Christopher Glein vom Southwest Research Institute die Entdeckung ein.

Zwar sei das Element selbst nicht in dem Dampf nachgewiesen worden, aber man habe Hinweise darauf gefunden, dass es in dem Ozean unter der Oberfläche reichlich vorkommt. Die zugrundeliegende Geochemie mache gelösten Phosphor unausweichlich und das Element müsste demnach dort sogar reichlicher vorkommen als in modernen Meerwasser auf der Erde: „Wir können jetzt noch zuversichtlicher sein, dass der Ozean auf Enceladus lebenswert ist“, meint Glein. Jetzt müssen wir dorthin zurückkehren, um herauszufinden, ob er auch tatsächlich bewohnt wird.

Bislang hätten Analysen nahegelegt, dass Phosphor auf Enceladus rar ist, was die Aussicht auf Leben dort trüben würde, erklärt das Forschungsteam noch. In der Form von Phosphaten sei das Element für alles Leben auf der Erde unerlässlich. Benötigt wird es für die Bildung von DNA und RNA, für energietragende Moleküle, Zellmembranen, sowie Knochen und Zähne. Die Suche nach dem Element passe zu dem neuen Fokus bei der Suche nach lebenswerten Bedingungen auf anderen Himmelskörpern. Dabei konzentriere man sich inzwischen auf den Nachweis solcher Grundbausteine.

Dass es überhaupt solche Ozeane unter den Oberflächen gleich mehrerer Himmelskörper im Sonnensystem gibt, ist eine der wichtigsten Erkenntnisse der Planetenforschung der vergangenen Jahrzehnte. Neben Enceladus gibt es auch Hinweise auf derartige Reservoire auf dem Jupitermond Europa und dem Saturnmond Titan und sogar dem Zwergplaneten Pluto. Ob sich in einem davon wirklich Leben entwickelt hat, gehört zu den spannendsten Fragen der aktuellen Forschung. Herausfinden lässt sich das aber wohl nur vor Ort. Der Fund von Phosphor wird jetzt im Fachmagazin Proceedings of the National Academy of Sciences of the United States of America erläutert.

Quelle: https://www.heise.de/news/Fast-alle-Bausteine-fuer-Leben-Phosphor-auf-Saturnmond-Encleadus-gefunden-7272592.html


Planet Trappist-1e ist ein erdähnlicher Planet (Stand Wissenschaft heute)

Trappist 1e: Künstlerische Darstellung. Wasser in flüssiger Form auf Trappist-1e Mindestens fünf der leichteren Trappisten-1-Planeten haben auf ihrer Oberfläche Wasser – sei es in flüssiger Form, als Eis oder Dampf vermuten Forscher. Der Kandidat für das flüssige Wasser, so ergaben die Berechnungen, ist der einzige der sieben Trappisten-Planeten, der eine leicht höhere Dichte als unsere Erde hat. Die Forscher spekulieren, dass er einen größeren Eisenkern als unsere Erde besitzen könnte.
Der nächste große Schritt bei der Erforschung von Trappist-1e wird vom künftigen James-Webb-Weltraumtelskop der Nasa erwartet. Es wird die chemische Zusammensetzung der Atmosphäre von Exoplaneten messen können. Dann wird man sehen, ob bei Trappist-1e auch die Chemie stimmt – was die Ähnlichkeit zu unserer Erde betrifft.

.

Exoplanet TOI-1452 b: Mögliche Wasserwelt im Visier

Künstlerische Darstellung des potenziellen Ozeanplaneten TOI-1452 b. © Benoit Gougeon, Université de Montréal

Ein vielleicht ebenfalls blauer Planet – 100 Lichtjahre von uns entfernt: Astronomen haben in einem Doppelsternsystem einen Exoplaneten entdeckt, der möglicherweise vollständig von einem tiefen Ozean bedeckt ist. TOI-1452 b ist etwas größer als die Erde und umkreist einen der beiden Sterne in einem Abstand, der flüssiges Oberflächenwasser ermöglichen könnte. Seine Dichte lässt auf einen hohen Anteil an leichter Substanz schließen – vermutlich handelt es sich dabei um Wasser. Scharfe Blicke mit dem James Webb Space Telescope sollen TOI-1452 b nun weitere Geheimnisse entlocken, sagen die Wissenschaftler.

Es wimmelt von Planeten im Weltall: Tausende von Himmelskörpern haben Astronomen um ferne Sterne bereits entdeckt. Mittlerweile richtet sich das Interesse deshalb auf die speziellen Exemplare. Besonders im Visier der Forschung stehen Exoplaneten, die ähnliche Merkmale aufweisen wie unsere kosmische Heimat. Ein zentraler Aspekt ist dabei der blaue Schatz der Erde. Denn flüssiges Wasser avancierte bei uns bekanntlich zum Lebenselixier: Es ist die Voraussetzung für die Existenz aller irdischen Organismen und man geht davon aus, dass ihre Entwicklungsgeschichte in den Ozeanen begann. Nun fügt das Astronomenteam um Charles Cadieux, Doktorand an der Université de Montréal, der kleinen Sammlung potenzieller Wasserwelten einen besonders vielversprechenden Kandidaten hinzu.

Auf die Spur des Exoplaneten brachten die Forscher Daten das Weltraumteleskops TESS der NASA, das den Himmel nach Planetensystemen in unserer kosmischen Nachbarschaft durchscannt. In einem etwa 100 Lichtjahre von der Erde entfernten System im Sternbild Drache erfasste TESS interessante Signale: Alle elf Tage kam es zu einer leichten Helligkeitsabnahme, die offenbar auf das Vorüberziehen eines Planeten zurückzuführen ist. Dieser Spur gingen die Forscher anschließend genauer nach. Dabei zeichneten sich immer interessantere Aspekte ab und so setzte das Team verschiedene astronomische Einrichtungen und Instrumente ein, um möglichst detaillierte Informationen zu sammeln.

Spannende Merkmale

Zunächst wurde deutlich, dass das Sternsystem nicht aus einem, sondern aus zwei Sternen besteht, die kleiner als unsere Sonne sind. Sie umkreisen einander in einer Entfernung, die etwa dem Zweieinhalbfachen der Entfernung zwischen der Sonne und Pluto entspricht. Deshalb hatte sie das TESS-Teleskop zunächst nur als einen einzigen Lichtpunkt wahrgenommen. Doch eine am kanadischen Observatoire du Mont-Mégantic (OMM) installierte Kamera konnte das Signal schließlich auflösen, um die beiden Objekte zu unterscheiden. So wurde auch deutlich, dass der Exoplanet den Stern TOI-1452 des Duos umkreist. Den Berechnungen zufolge bekommt er dabei Energiemengen ab, die zu gemäßigten Bedingungen führen könnten, die flüssiges Wasser auf der Oberfläche ermöglichen.

Aus den Transitdaten ging hervor, dass der Planet etwa 70 Prozent größer als die Erde ist. Um die Masse des Planeten zu bestimmen, kam dann die Radialgeschwindigkeitsmethode zum Einsatz, die Rückschlüsse auf die Merkmale eines Planeten anhand seines Schwerkraft-Einflusses auf seinen Zentralstern ermöglicht. Dabei kam das Instrument „SPIRou“ am OMM zum Einsatz, das besonders für die Untersuchung von Sternen mit geringer Masse wie TOI-1452 geeignet ist, da es im Infrarotspektrum arbeitet, in dem diese Sterne am hellsten leuchten. Wie das Team berichtet, ergaben die Datenauswertungen eine Masse von TOI-1452, die etwa dem Fünffachen der Erde entspricht.

Ein Ozeanplanet?

„Sein Radius und seine Masse lassen auf eine viel geringere Dichte schließen, als man sie bei einem Planeten erwarten würde, der im Wesentlichen aus Metall und Gestein besteht, wie die Erde“, sagt Cadieux. Die Merkmale lassen sich dadurch erklären, dass ein großer Teil der Masse aus leichteren Materialien besteht. Eine plausible Erklärung wäre dabei Wasser. „TOI-1452 b ist einer der besten Kandidaten für einen Ozeanplaneten, die wir bisher gefunden haben“, sagt Cadieux. Aus Modellsimulationen der Wissenschaftler ging hervor, dass TOI-1452 b aus bis zu 30 Prozent Wasser bestehen könnte. Er wäre damit eine ausgesprochene Wasserwelt. Denn obwohl die Erde manchmal als blauer Planeten bezeichnet wird, weil etwa 70 Prozent ihrer Oberfläche von Ozeanen bedeckt sind, ist sie eigentlich ein eher trockener Planet: Wasser macht tatsächlich nur etwa ein Prozent der irdischen Masse aus.

TOI-1452 b ist nun ein perfekter Kandidat für weitere Beobachtungen mit dem James Webb Space Telescope, sagen die Wissenschaftler. Er ist auch nahe genug an der Erde, sodass die Forscher hoffen, seine Atmosphäre untersuchen zu können, um weitere Hinweise darauf zu gewinnen, ob es sich tatsächlich um einen Ozeanplaneten handelt. Ein Glücksfall ist zudem, dass er sich in einer Region des Himmels befindet, die das Webb-Teleskop das ganze Jahr über beobachten kann. „Unsere geplanten Untersuchungen mit dem Webb-Teleskop werden entscheidend dazu beitragen, TOI-1452 b besser zu verstehen“, sagt René Doyon von der Université de Montréal. „Sobald möglich, werden wir Zeit auf Webb buchen, um diese geheimnisvolle Welt zu beobachten.“

Quelle: University of Montreal, Fachartikel: The Astronomical Journal, doi: 10.3847/1538-3881/ac7cea

https://www.wissenschaft.de/astronomie-physik/moegliche-wasserwelt-im-visier/


Ein Planet … Ozean?

  Gepostet am 24. August 2022 von Marie-Eve Naud

  Hinterlasse einen Kommentar

Ein Team von Astronomen der Universität Montreal gibt die Entdeckung eines möglicherweise mit Wasser bedeckten Exoplaneten bekannt, der dank verschiedener Instrumente am Boden und im Weltraum, die teilweise in Kanada entwickelt wurden, ein ideales Ziel für das James Webb Space Telescope ist.

Künstlerische Darstellung des Exoplaneten TOI-1452 b, eines kleinen Planeten, der möglicherweise vollständig von einem tiefen Ozean bedeckt ist. Bildnachweis: Benoit Gougeon, Universität Montreal .

Charles Cadieux, der Doktorand, der die Entdeckung des
Exoplaneten TOI-1452 b leitete. Mit freundlicher Genehmigung Foto .

Ein internationales Forschungsteam unter der Leitung von Charles Cadieux , Doktorand an der Universität Montreal und Mitglied des Institute for Research on Exoplanets (iREx), gibt die Entdeckung von TOI-1452 b bekannt, einem Exoplaneten, der einen der kleinen Sterne von a umkreist Binärsystem im Sternbild des Drachen, 100 Lichtjahre von der Erde entfernt. 

Der Planet, etwas größer und massiver als die Erde, befindet sich in einem Abstand von seinem Stern, der es ihm ermöglicht, eine Temperatur aufrechtzuerhalten, die weder zu heiß noch zu kalt ist, als dass flüssiges Wasser auf seiner Oberfläche existieren könnte. Astronomen glauben auch, dass es sich um einen „Ozeanplaneten“ handeln könnte, eine Art Planet, der vollständig von einer dicken Wasserschicht bedeckt wäre, deren Zusammensetzung an die bestimmter Monde von Jupiter und Saturn erinnert. 

In einem Artikel, der am 12. August im Astronomical Journal erschien, beschreiben Charles Cadieux und sein Team die verschiedenen Beobachtungen, die gesammelt wurden, um die Natur und Eigenschaften dieses Exoplaneten zu klären.

„Ich bin sehr stolz auf diese Entdeckung, weil sie die Qualität lokaler Astronomen und Instrumente unterstreicht“, sagt René Doyon , Professor an der Université de Montréal und Direktor von iREx und dem Observatoire du Mont-Megantic (WMO). Ohne das Mont-Mégantic-Observatorium, das in unseren Labors entwickelte SPIRou-Instrument und eine innovative Analysemethode, die von unseren Forschungsmitarbeitern entwickelt wurde, hätten wir diesen einzigartigen Exoplaneten nicht entdecken können.“

Das Mont-Mégantic-Observatorium im Herzen der Entdeckung

Das Mont-Mégantic-Observatorium in den östlichen Townships von Quebec verfügt über ein 1,6-m-Teleskop, das diese Entdeckung bestätigte. Bildnachweis: Emir Chouchane, Universität Montreal .

Es war dem TESS-Weltraumteleskop der NASA zu verdanken, das den Himmel auf der Suche nach Planetensystemen abtastet, die unserem am nächsten sind, dass das Team diesem seltsamen Exoplaneten auf die Spur kam. TESS-Beobachtungen legten nahe, dass sich in diesem Doppelsternsystem ein Exoplanet befinden könnte, der etwa 70 % größer ist als die Erde, da alle 11 Tage eine leichte Abnahme der Helligkeit des Sterns beobachtet wurde.  

Charles Cadieux gehört zu einer Gruppe von Astronomen, die potenzielle Planeten verfolgen, die von TESS am Boden entdeckt wurden, um ihre Natur zu bestätigen und ihre Eigenschaften zu klären. Dazu verwendet er die von David Lafrenière , Professor an der Universität Montreal, und seinem Doktoranden François-René Lachapelle entworfene PESTO-Kamera , die am Teleskop des Observatoire du Mont-Mégantic in den Eastern Townships installiert ist. 

„Das Mont-Mégantic-Observatorium spielte eine entscheidende Rolle bei der Bestätigung der Existenz dieses Planeten und der Bestimmung seines Radius“, erklärt Charles Cadieux . In diesem Fall handelte es sich nicht um eine Routineprüfung, da sichergestellt werden musste, dass das von TESS erfasste Signal einem Exoplaneten um TOI-1452, dem massereicheren der beiden Sterne dieses Doppelsternsystems, entspricht. 

Der Stern TOI-1452, viel kleiner als die Sonne, befindet sich tatsächlich in einem Doppelsystem, das einen anderen Stern ähnlicher Größe enthält. Die beiden Sterne befinden sich in einer Umlaufbahn umeinander und der Abstand zwischen ihnen (97 astronomische Einheiten oder etwa das Zweieinhalbfache des Abstands zwischen Sonne und Pluto) ist so gering, dass das TESS-Teleskop sie nur wie einen einzigen Lichtpunkt sieht . Die PESTO-Kamera hat eine ausreichende Auflösung, um sie zu unterscheiden. Beobachtungen mit dem Instrument bestätigten, dass der Exoplanet tatsächlich den Stern TOI-1452 umkreist. Nachfolgende Beobachtungen eines japanischen Teams deuteten in die gleiche Richtung. 

Das Genie der Quebecer Forscher bei der Arbeit

Um die Masse des Planeten zu bestimmen, beobachtete das Team das System anschließend mit dem SPIRou-Instrument , das auf Hawaii am Canada-France-Hawaii Telescope installiert ist. Dieses Instrument, das größtenteils in Kanada entwickelt wurde, ist ideal für die Untersuchung von Sternen mit geringer Masse wie TOI-1452, da es im Infrarotbereich arbeitet, wo diese Sterne am hellsten sind. Fast 50 Stunden Beobachtung waren noch nötig, um eine Schätzung der Masse des Planeten zu erhalten, die fast das Fünffache der Erde betragen würde. 

Das SPIRou-Instrument, das teilweise von einem kanadischen Team entwickelt wurde,
ermöglichte es, die Masse des Exoplaneten zu bestimmen und damit seine Natur zu klären. Bildnachweis : S.Chastanet – CNRS/OMP .

Die Forscher Étienne Artigau und Neil Cook , ebenfalls von iREx an der Université de Montréal, spielten eine Schlüsselrolle bei der Analyse dieser Daten. Dank einer sehr innovativen Analysemethode, die sie entwickelt haben, war es möglich, die Existenz des Exoplaneten in den Daten von SPIRou aufzudecken.

„Die LBL-Methode [für line-by-line ] ermöglicht es, die von SPIRou erhaltenen Daten von vielen Störsignalen zu bereinigen und die schwache Signatur von Planeten wie dem von unserem Team entdeckten aufzudecken“, sagt Étienne Artigau . 

Dem Team gehören auch mehrere andere Forscher aus Quebec an, darunter Farbod Jahandar und Thomas Vandal , zwei weitere Doktoranden der Universität Montreal. Die erste führte eine Analyse der chemischen Zusammensetzung des Sterns TOI-1452 durch, die hilft, die innere Struktur des Planeten und damit seine Natur abzuleiten. Der zweite Student trug zur Analyse der mit SPIRou erfassten Daten bei. 

Eine Welt aus Wasser

Der Exoplanet TOI-1452 b mag felsig sein wie die Erde, aber sein Radius, seine Masse und seine Dichte deuten darauf hin, dass es sich um eine ganz andere Welt als unsere handelt. Die Erde ist ein besonders trockener Planet. Obwohl er manchmal als blauer Planet bezeichnet wird – in Anlehnung an die Ozeane, die etwa 70 % seiner Oberfläche bedecken – macht Wasser nur einen vernachlässigbaren Bruchteil seiner Masse aus, weniger als ein Prozent. 

Unter den Exoplaneten könnte es Welten geben, in denen viel mehr Wasser vorhanden ist. In den letzten Jahren haben Astronomen mehrere dieser Planeten mittlerer Größe zwischen Erde und Neptun (der etwa 3,8-mal so groß wie die Erde ist) entdeckt, für die sowohl der Radius als auch die Masse bekannt sind. Einige dieser Planeten haben eine Dichte, die nur erklärt werden kann, wenn ein großer Teil der Masse aus Materialien besteht, die leichter sind als diejenigen, aus denen die innere Struktur der Erde besteht, wie beispielsweise Wasser. Diese hypothetischen Welten tragen den Spitznamen „Ozeanplaneten“.

„Der Exoplanet TOI-1452 b ist einer der besten Kandidaten für den Titel ‚Ozeanplanet‘, den wir kennen“, sagt Charles Cadieux . „Radius und Masse des Planeten deuten auf eine geringere Dichte hin, als man von einem Planeten erwarten würde, der wie die Erde hauptsächlich aus Metall und Gestein besteht. »

Künstlerische Darstellung der Oberfläche von TOI-1452 b, der ein „Ozeanplanet“ sein könnte, d.h. ein Planet, der vollständig von einer dicken Schicht aus flüssigem Wasser bedeckt ist. Bildnachweis: Benoit Gougeon, Universität Montreal . 

Mykhaylo Plotnykov und Diana Valencia von der University of Toronto sind Spezialisten für Modelle der inneren Struktur von Exoplaneten. Für TOI-1452 b lässt die Analyse dieser Spezialisten den Schluss zu, dass der Anteil der Wassermasse des Planeten 30 % erreichen könnte, d. h. einen Anteil ähnlich dem bestimmter natürlicher Satelliten des Sonnensystems wie Ganymed und Callisto , Monde des Jupiter, oder Titan und Enceladus, Monde des Saturn.

Die Fortsetzung mit dem James Webb Space Telescope

Ein Exoplanet wie TOI-1452 b ist ein Hauptziel für das Webb-Weltraumteleskop . Es ist einer der wenigen bekannten gemäßigten Planeten, der Eigenschaften aufweist, die mit denen einer Wasserwelt kompatibel sind. Er ist der Erde so nah, dass wir hoffen können, seine Atmosphäre zu untersuchen und somit zu bestätigen, dass es sich tatsächlich um einen „Meeresplaneten“ handelt. Außerdem befindet es sich glücklicherweise in einem Teil des Himmels, den das Teleskop das ganze Jahr über beobachten kann! 

René Doyon , der auch der Hauptforscher von NIRISS ist, einem der vier wissenschaftlichen Instrumente des James-Webb-Weltraumteleskops, kommt zu dem Schluss: 

„Beobachtungen mit Webb werden wesentlich sein, um die Natur von TOI-1452 b genauer zu bestimmen. Sobald wir können, werden wir um Zeit bitten, diesen seltsamen Planeten zu beobachten.“

Mehr wissen 

Der Artikel „ TOI-1452 b: SPIRou and TESS offenbaren eine Supererde in einer gemäßigten Umlaufbahn, die einen M4-Zwerg durchläuft “ wurde am 12. August 2022 im Astronomical Journal veröffentlicht . Neben Charles Cadieux, René Doyon, Étienne Artigau, Neil Cook, Farbod Jahandar und Thomas Vandal (iREx, UdeM, Kanada) sowie Mykhaylo Plotnykov und Diana Valencia (University of Toronto) umfasst das Team Nicolas B. Cowan (iREx, MSI, McGill, Kanada), Björn Benneke, Stefan Pelletier und Antoine Darveau-Bernier (iREx, UdeM, Kanada), Ryan Cloutier, ehemaliges Mitglied von iREx (Harvard, USA) und 43 Co-Autoren aus Frankreich, Brasilien, USA, Japan, Spanien, Schweiz, Portugal, Ungarn, Deutschland und Krim.

Quelle: http://www.exoplanetes.umontreal.ca/une-planete-ocean/

James Webb Teleskop/WASP-96b: Der wolkenlose Exoplanet – Nicht ganz!

Doma GIF - Find & Share on GIPHY
Es werden tolle Zeiten in der Exoplaneten-Erforschung kommen.

WASP-96b: Der wolkenlose Exoplanet – Nicht ganz! Wow, ich hatte echt tränen in den Augen. Die Leistung des Teleskop ist unbeschreiblich. Es werden tolle Zeiten in der Exoplaneten-Erforschung kommen. Hier und da wird man die Bücher noch umschreiben müssen.

Christian Dauck
#Webb zeigt die dampfende Atmosphäre des Exoplaneten WASP-96 b und erfasst die deutliche Signatur von Wasser zusammen mit Beweisen für Wolken und Dunst – die bisher detailliertesten Messungen dieser Art. Lesen Sie hier mehr: https://esawebb.org/news/weic2206/ oder unten #WebbSeesFarther
Das Ergebnis: eine Lichtkurve, die das gesamte Sternenlicht zeigt, das während des Transits schwächer wird, wenn der Planet etwas Sternenlicht blockiert, und ein Transmissionsspektrum, das durch den Vergleich von durch die Atmosphäre eines Planeten gefiltertem Sternenlicht mit ungefiltertem Sternenlicht entsteht, wenn sich der Planet neben dem Stern befindet. Die Lichtkurve bestätigt bereits bestimmte Planeteneigenschaften – Existenz, Größe und Umlaufbahn. Das Transmissionsspektrum enthüllt zuvor verborgene Details der Atmosphäre: die eindeutige Signatur von Wasser, Hinweise auf Dunst & Hinweise auf Wolken.
Das außerordentlich detaillierte Spektrum gibt einen Hinweis darauf, was #Webb für die Exoplanetenforschung bereithält. Im kommenden Jahr werden Forscher die Oberflächen und Atmosphären von mehreren Dutzend Exoplaneten analysieren, von kleinen Gesteinsplaneten bis hin zu gas- und eisreichen Riesen. #WebbSeesFarther


Wolkenfreie Atmosphäre von WASP 96bExoplanet mit Schönwetter-Garantie

Artikel vom 03.08.2018

Der Planet WASP-69b (Schreibfehler) umrundet einen sonnenähnlichen Stern im Sternbild Phönix. Für einen Umlauf benötigt er knapp dreieinhalb Tage. Daraus leitet sich ein recht geringer Abstand von nur knapp sieben Millionen Kilometern zu seinem Zentralstern ab.

Beim Transit eines Exoplaneten lässt sich auch dessen Atmosphäre untersuchen
Beim Transit eines Exoplaneten lässt sich auch dessen Atmosphäre untersuchen (NASA)

Entdeckt wurde er vor etwa fünf Jahren, weil er von der Erde aus gesehen regelmäßig vor seinem Zentralstern entlang zieht und dabei dessen Licht vorübergehend geringfügig abschwächt.

Aus der Dauer und der Stärke dieser Abschwächung lässt sich die Größe des Planeten zu etwas mehr als Jupitergröße abschätzen. Andere Messungen erlauben die Ermittlung der Planetenmasse, die bei etwa halber Jupitermasse liegt.

Jetzt ist es einem Team um Nikolay Nikolov von der Universität Exeter mit dem Very Large Telescope der Europäischen Südsternwarte gelungen, ein Spektrum der Planetenatmosphäre aufzunehmen.

Aus den darin enthaltenen Spektrallinien wird deutlich, dass die Atmosphäre offenbar völlig wolkenfrei ist – sonst könnte das Muster der Natriumlinien im Spektrum nicht vollständig zu finden sein.

Damit bietet WASP-69b (Schreibfehler) eine einzigartige Schönwetter-Garantie und böte sich entsprechend als Top-Ziel für zukünftige interstellare Reiseveranstalter an – wäre da nicht der Haken mit der Temperatur auf diesem Planeten:

Aus dem Abstand zwischen Stern und Planet und der Oberflächentemperatur des Sterns lässt sich errechnen, dass die Oberfläche des Planeten und seine Atmosphäre rund 1.000 Grad Celsius heiß sind – dieser Exoplanet ist nicht wirklich einladend.

Quelle: https://www.deutschlandfunk.de/wolkenfreie-atmosphaere-von-wasp-96b-exoplanet-mit-100.html


WASP-96b: Der wolkenlose Exoplanet

Natrium, das normalerweise von dunstigen Atmosphären verdeckt wird, leuchtet hell im Spektrum dieses Exoplaneten.Von 

Amber Jorgenson  | Veröffentlicht: Dienstag, 8. Mai 2018

169696_web
Diese Abbildung zeigt WASP-96b, einen Exoplaneten, der etwa 980 Lichtjahre von der Erde entfernt ist. Forscher haben kürzlich eine große Menge Natrium beobachtet, das normalerweise von Wolken verschleiert wird und das Spektrum des Exoplaneten ausstrahlt. Die Entdeckung dieses Elements weist auf eine klare, wolkenfreie Atmosphäre hin.

Seit geraumer Zeit vermuten Astronomen, dass heiße Gasriesen außerhalb unseres Sonnensystems reich an Natrium sind – dem siebthäufigsten Element im Universum. Dieses schwer fassbare Element blieb jedoch in früheren exoplanetaren Studien größtenteils unentdeckt, da seine Signaturen zu schwach sind, um durch wolkige Atmosphären zu dringen. Aber jetzt hat ein internationales Team von Astronomen Spekulationen zerschlagen und den ersten starken Natrium-Fingerabdruck entdeckt, der von einem „heißen Saturn“ ausstrahlt, was darauf hindeutet, dass der Planet eine klare, wolkenfreie Atmosphäre hat. Die Forschung wurde am 7. Mai in der Zeitschrift Nature veröffentlicht .

Unter Verwendung des Very Large Telescope der Europäischen Südsternwarte (ESO) in Chile entdeckten die Forscher deutliche Natriumsignaturen in der Atmosphäre von WASP-96b, einem Exoplaneten, der sich fast 1.000 Lichtjahre von der Erde entfernt befindet. WASP-96b ist etwa 20 Prozent größer als Jupiter und hat ungefähr die gleiche Masse wie Saturn, aber da er seinem Mutterstern viel näher steht als Saturn der Sonne, fällt er aufgrund seiner glühenden Temperatur in die Kategorie „heißer Saturn“.

Das Forschungsteam unter der Leitung von Dr. Nikolay Nikolov von der University of Exeter verwendete das Very Large Telescope, um detaillierte Spektren vieler heißer Gasriesen zu sammeln. Durch die Erfassung des Spektrums eines Planeten können Forscher das Licht in seine verschiedenen Wellenlängen zerlegen und die chemische Zusammensetzung des Planeten bestimmen. Bei der Untersuchung der Zusammensetzung von WASP-96b fanden sie Spektrallinien, die auf das Vorhandensein von Natrium hinweisen. Die Zeichen dieses Elements, die typischerweise von bewölktem Himmel verdeckt werden, erschienen im Spektrum des Exoplaneten als zeltförmige Silhouette, was bedeutet, dass der Planet eine klare, wolkenlose Atmosphäre hat.

„Wir haben uns mehr als zwanzig Transitspektren von Exoplaneten angesehen. WASP-96b ist der einzige Exoplanet, der völlig wolkenfrei zu sein scheint und eine so klare Natriumsignatur zeigt, was den Planeten zu einem Maßstab für die Charakterisierung macht“, sagte Nikolov in a Pressemitteilung . „Bisher wurde Natrium entweder als sehr schmaler Peak angezeigt oder als vollständig fehlend befunden. Dies liegt daran, dass das charakteristische „zeltförmige“ Profil nur tief in der Atmosphäre des Planeten und für die meisten Planeten erzeugt werden kann

Natriumpeak400

Beim Betrachten des Spektrums von WASP-96b stellten Astronomen fest, dass das spektrale Signal für Natrium wie ein Zelt geformt war (links). Das bedeutet, dass der Planet wolkenfrei ist, da eine Wolkendecke die spektrale Signatur teilweise abschneiden würde (rechts).N. Nikolow/E. de MooijBewölkte Atmosphären wurden sowohl um extrem heiße als auch extrem kalte Exoplaneten herum beobachtet, aber vor WASP-96b wurden nur dunstige Atmosphären gesehen, die heiße Gasriesen einhüllten. Nachdem nun eine wolkenlose Atmosphäre identifiziert wurde, können Forscher den Ausreißer mit seinen wolkenreichen Gegenstücken vergleichen. Die Untersuchung ihrer Unterschiede wird dem Forschungsteam helfen zu verstehen, warum Wolken die meisten Heißgasriesen bevorzugen und WASP-96b ignorieren. Der Natriumreichtum auf WASP-96b hat zweifellos dazu beigetragen, seine klare Atmosphäre zu identifizieren, aber seine Anwesenheit könnte auch auf planetare Bedingungen hinweisen. Die Menge an gefundenem Natrium ist ähnlich wie in unserem eigenen Sonnensystem, und auf der Erde reguliert Natrium den Stoffwechsel bei Menschen und Tieren, ist ein reichlich vorhandener Bestandteil unserer Ozeane und macht etwa 2,6 Prozent unserer Kruste aus. Mit vergleichbaren Natriummengen wie Planeten in unserem Sonnensystem könnten auch seine Bedingungen ziemlich ähnlich sein. Die Entdeckung geht auch über Natrium hinaus. Die wolkenfreie Atmosphäre wird es den Forschern ermöglichen, Elemente zu untersuchen, die normalerweise von dicken Wolken verdeckt werden, wie Kohlendioxid, Kohlenmonoxid und Wasser. Sie planen, das Hubble-Weltraumteleskop der NASA und das kommende James-Webb-Weltraumteleskop zu verwenden, um WASP-96b und seine weit geöffneten Planetenmerkmale weiter zu untersuchen. Und ohne lästige Wolken im Weg, wer weiß, was sie sonst noch finden können.

Quelle: https://astronomy.com/news/2018/05/the-cloudless-exoplanet

Die NASA wird die Ankunft von Webb am endgültigen Bestimmungsort und die nächsten Schritte besprechen

Die Konzeption dieses Künstlers zeigt das vollständig entfaltete James Webb Space Telescope im All.

Die Konzeption dieses Künstlers zeigt das vollständig entfaltete James Webb Space Telescope im All.Credits: Adriana Manrique Gutierrez, NASA-Animator

Wissenschaftler und Ingenieure, die das James-Webb-Weltraumteleskop der NASA betreiben, werden am Montag, den 24. Januar um 15:00 Uhr EST in einer NASA Science Live-Sendung Fragen zu den neuesten Meilensteinen der Mission beantworten, gefolgt von einer Medien-Telekonferenz um 16:00 Uhr.

Die Sendung wird live online auf der NASA Science Live-  Website sowie auf YouTube , Facebook und Twitter ausgestrahlt . Der Ton der Telefonkonferenz wird live auf der Website der Agentur übertragen .

Bodenteams planen, Webbs Triebwerke am Montag, dem 24. Januar, um 14:00 Uhr abzufeuern, um das Weltraumteleskop am zweiten Lagrange-Punkt oder L2, seinem beabsichtigten Ziel, fast 1 Million Meilen von der Erde entfernt, in die Umlaufbahn um die Sonne zu bringen. 

Diese Korrekturverbrennung in der Mitte des Kurses ist seit langem für ungefähr 29 Tage nach dem Start geplant. Diese Woche wählte das Operationsteam der Mission das Zieldatum und die Zielzeit für die Verbrennung aus. 

Die Ingenieure beendeten auch das ferngesteuerte Bewegen der Spiegelsegmente von Webb aus ihren Startpositionen, um mit dem monatelangen Prozess der Ausrichtung der Optik des Teleskops zu beginnen.

Zuschauer dieser Folge „Wie geht es mit dem James-Webb-Weltraumteleskop weiter?“ können Fragen in den sozialen Medien mit dem Hashtag #UnfoldtheUniverse einreichen oder indem sie einen Kommentar im Chat-Bereich des Facebook- oder YouTube-Streams hinterlassen. Fragen aus der Bevölkerung werden beantwortet von:

  • Amber Straughn, stellvertretende Projektwissenschaftlerin für Webb-Kommunikation, Goddard Space Flight Center der NASA in Greenbelt, Maryland
  • Scarlin Hernandez, Flugsystemingenieurin, Space Telescope Science Institute in Baltimore

Im Anschluss an die Episode wird die NASA eine Medien-Telekonferenz veranstalten, die sich auf die L2-Einfügungsverbrennung und Spiegelbewegungen sowie die nächsten Schritte zur Vorbereitung von Webb auf die Durchführung von Wissenschaft konzentriert. Der Anruf beinhaltet:

  • Lee Feinberg, Elementmanager des Webb-Optikteleskops, Goddard
  • Amy Lo, Leiterin der Webb-Fahrzeugtechnik, Northrop Grumman
  • Keith Parrish, Betriebsleiter des Webb-Observatoriums, Goddard
  • Jane Rigby, Webb Operations Project Scientist, Goddard

Quelle: https://www.nasa.gov/press-release/nasa-to-discuss-webb-s-arrival-at-final-destination-next-steps

NASA to Discuss Webb’s Arrival at Final Destination, Next Steps

This artist’s conception shows the fully unfolded James Webb Space Telescope in space.

This artist’s conception shows the fully unfolded James Webb Space Telescope in space.Credits: Adriana Manrique Gutierrez, NASA Animator

Scientists and engineers operating NASA’s James Webb Space Telescope will answer questions about the mission’s latest milestones in a NASA Science Live broadcast at 3 p.m. EST Monday, Jan. 24, followed by a media teleconference at 4 p.m.

The broadcast will air live online on the NASA Science Live website, as well as YouTubeFacebook, and Twitter. Audio of the teleconference will stream live on the agency’s website.

Ground teams plan to fire Webb’s thrusters at 2 p.m. Monday, Jan. 24 to insert the space telescope into orbit around the Sun at the second Lagrange point, or L2, its intended destination, nearly 1 million miles from Earth. This mid-course correction burn has long been planned for approximately 29 days after launch. This week, the mission operations team selected the target date and time for the burn. Engineers also finished remotely moving Webb’s mirror segments out of their launch positions to begin the months-long process of aligning the telescope’s optics.

Viewers of this episode, “What’s Next for the James Webb Space Telescope?” can submit questions on social media using the hashtag #UnfoldtheUniverse or by leaving a comment in the chat section of the Facebook or YouTube stream. Questions from the public will be answered by:

  • Amber Straughn, deputy project scientist for Webb communications, NASA’s Goddard Space Flight Center in Greenbelt, Maryland
  • Scarlin Hernandez, flight systems engineer, Space Telescope Science Institute in Baltimore

Following the episode, NASA will host a media teleconference focused on the L2 insertion burn and mirror movements, as well as the next steps in preparing Webb to conduct science. The call will feature:

  • Lee Feinberg, Webb optical telescope element manager, Goddard
  • Amy Lo, Webb vehicle engineering lead, Northrop Grumman
  • Keith Parrish, Webb observatory commissioning manager, Goddard
  • Jane Rigby, Webb operations project scientist, Goddard

Start des Webb-Weltraumteleskops der NASA für den 24. Dezember bestätigt

Das James-Webb-Weltraumteleskop ist für den geplanten Starttermin am 24. Dezember um 7:20 Uhr EST bestätigt.

Gestern haben die Teams am Startplatz die Kapselung des Observatoriums in der Ariane-5-Rakete erfolgreich abgeschlossen, die es ins All bringen wird. 

Die abschließende Überprüfung der Markteinführungsbereitschaft von Webb wird am Dienstag, den 21. Dezember stattfinden, und bei Erfolg ist die Einführung für Mittwoch, den 22. Dezember geplant.

Doma GIF - Find & Share on GIPHY
Wir kommen dem Ziel eines Starts immer näher.

Yeah Baby! Auch am Weihnachten arbeitet die Start-Mannschaft, so gehört sich dass, denn so würde ich auch bei solchen Raumfahrt-Projekten arbeiten. Schön die Bereitschaft und den willen der beteiligten und der Start-Mannschaft zu spüren dieses Teleskop endlich zu starten.

Christian Dauck

Astrobiologie: Genauere Untersuchung von Exoplaneten mit dem Weltraumteleskop „Cheops“

Erste Weltraummission, die Exoplaneten im Detail unter die Lupe nimmt. Eine neue Ära in der Erforschung von Exoplaneten.

Eines der wichtigsten, bedeutendes, interessantesten und Spannendsten Missionen beginnt. Für die Astrobiologie wird es mit dem geplanten Start von dem europäischen Weltraumteleskop „Cheops“ am 17.12 (Update: Start verschoben neue Versuchsmöglichkeiten alle 24 stunden) spannend. Eine Mission auf die ich schon lange warte und mich sehr freue. Endlich geht es los – Hurra! Ich bin sehr gespannt was der neue Satellit für Entdeckungen macht und wie Exoplaneten beschaffen sind: Gestein, Wasser oder Gas. Wie super, „Cheops“ ist kein Satellit der nach neuen Exoplaneten suchen soll sondern bestimme vorhandene genauer unter suchen soll. Ein sehr schönes Weihnachtsgeschenk der ESA für Raumfahrtfans die sich für Astrobiologie und Exoplaneten interessieren. Cheops-Webseite: https://cheops.unibe.ch/de/

Der Satellit «Cheops» wird im europäischen Weltraumbahnhof für den Start vorbereitet.

Science-Fiction! Wissenschaftlich irrelevant! Antrag abgelehnt! Als Willy Benz im Jahr 2000 einen Forschungsschwerpunkt etablieren wollte, der Planeten in fernen Sonnensystemen untersucht, stieß der Schweizer Astrophysiker auf breite Ablehnung, auf Unverständnis, auf Kopfschütteln. Als Benz acht Jahre später dafür plädierte, einen Satelliten zum Studium genau dieser Exoplaneten zu bauen, fiel die Reaktion der Fachkollegen zwar etwas milder aus, das Ergebnis aber war das gleiche: Antrag abgelehnt!

Credit: Thomas Beck / Universität Bern

Heute Ende 2019 sind mehr als 4100 Planeten bekannt, die um andere Sterne als unsere Sonne kreisen. Das rasant wachsende Forschungsfeld ist gerade mit seinem ersten Nobelpreis ausgezeichnet worden. Und auch Benz’ Satellit steht – nach jahrelanger Wartezeit – endlich vor einer großen Zukunft. Genauer gesagt: Er steht auf der Startrampe Quelle: https://www.spektrum.de/news/die-vermessung-der-exoplaneten/1692748

Die Geschichte von CHEOPS

An der Universität Bern bauen Ingenieure das Weltraumteleskop CHEOPS zusammen. Es soll von einer Erdumlaufbahn aus den Durchmesser von Exoplaneten messen, die Lichtjahre von uns entfernt vor ihrem Mutterstern hindurchziehen. Die Idee für CHEOPS hatten Schweizer Astronomen bereits 2008.

Eigentlich wollte Willy Benz, Professor am Physikalischen Institut der Universität Bern, während eines Urlaub-Semesters 2008 auf Reisen gehen. Doch anstatt dieses Sabbatical an ausländischen Universitäten zu verbringen, sass der Astrophysiker zu Hause am Schreibtisch und arbeitete an einem Forschungsantrag. Der Schweizerische Nationalfonds hatte die Vergabe von neuen Nationalen Forschungsschwerpunkten (NFS) ausgeschrieben und Willy Benz wollte zusammen mit seinem Genfer Kollegen Didier Queloz einen Vorschlag zur Planetenforschung einreichen.

Das CHEOPS-Team baut im Reinraum an der Uni Bern das Flugmodell zusammen. (Foto PlanetS)model in the clean room. (Photo PlanetS)

1995 hatten der damalige Doktorand Queloz und sein Professor Michel Mayor den ersten sogenannten Exoplaneten bei einem sonnenähnlichen Stern entdeckt. Benz hatte neun Jahre zuvor ebenfalls bei Mayor an der Universität Genf doktoriert. Bereits im Jahr 2000 hatte er beim Nationalfonds einen Vorschlag für einen Nationalen Forschungsschwerpunkt zur Exoplanetenforschung eingereicht, war damit aber abgeblitzt. «Das sei Science-Fiction, hat man mir damals im Interview mitgeteilt,» erinnert sich der Astrophysiker. Dabei kannte man im Jahr 2000 schon Dutzende von Exoplaneten, 2008 waren es 300, heute sind es über 3000. Quelle: https://cheops.unibe.ch/de/die-geschichte-von-cheops/

Das Weltraumteleskop „Cheops“ soll bereits bekannte Exoplaneten genau untersuchen: Welche von ihnen haben das Potenzial, Leben zu beherbergen und für eine zweite Erde?

Noch in den 1990er Jahren waren Planeten außerhalb unseres Sonnensystems nur aus der Science Fiction bekannt. Dann fanden Michel Mayor und Didier Queloz vom Departement für Astronomie der Universität Genf am 10. Dezember 1995 im Sternbild Pegasus den Himmelskörper 51 Pegasi b. Er kreist um den sonnenähnlichen Stern Helvetius, hat in etwa die Größe von Jupiter und ist rund 50 Lichtjahre von der Erde entfernt. Für ihre Entdeckung erhielten die beiden Schweizer Forscher am 10. Dezember den diesjährigen Physiknobelpreis.

Leben im All: 4000 neue Planeten mit Potenzial entdeckt

51 Pegasi b war nur der Anfang: Seither haben Astronomen mit Hilfe moderner Weltraumteleskope mehr als 4000 weitere Exoplaneten, wie Planeten außerhalb unseres Sonnensystems bezeichnet werden, gefunden. Auf einem Teil von ihnen dürften Bedingungen herrschen, die Leben ermöglichen könnten. Doch welche Planeten sind das? Bei dem bloßen Entdecken ihrer Existenz ist das nicht unbedingt zu erkennen, auch wenn der Abstand, um den ein Planet um seinen Stern kreist, gewisse Anhaltspunkte liefern kann.

Um Exoplaneten näher zu untersuchen, startet die europäische Weltraumorganisation Esa am Dienstag nächster Woche, 17. Dezember, die Mission „Cheops“ (kurz für „Characterising Exoplanet Satellite“). Sie wird um 9.54 Uhr mitteleuropäischer Zeit mit einer Sojus-Fregat-Rakete vom europäischen Weltraumbahnhof in Kourou, Französisch-Guyana, auf den Weg gebracht. „Cheops“ ist die erste Esa-Mission, die sich der Erforschung von Exoplaneten außerhalb unseres Sonnensystems widmet, und ein Gemeinschaftsprojekt mit der Schweiz sowie einem Konsortium aus elf weiteren Ländern unter der Leitung der Universität Bern.

Cheops“: Teleskop beobachtet Sterne mit bekannten Planetensystemen

Bei „Cheops“ handelt es sich um ein Weltraumteleskop, das Sterne mit bekannten Planetensystemen beobachten und dabei mittels hochmoderner Photometrie (ein Messverfahren im Wellenlängenbereich des sichtbaren Lichts) auch kleinste Veränderungen bei der Helligkeit messen soll. Zieht ein Planet gerade zwischen dem Teleskop und seinem Zentralgestirn vorbei, dann verdeckt er während dieser Passage einen Teil der Oberfläche des Sterns.

Auf diese Weise ist es überhaupt erst möglich, Exoplaneten zu finden. Über die Dauer der Abdunklung können die Forscher auch etwas über die Größe der Planeten erfahren. Die Größe liefert in Kombination mit der Masse – die über Geschwindigkeitsmessungen zu berechnen ist – ein Maß für die Dichte des Planeten. Aus der Dichte wiederum lassen sich Rückschlüsse ziehen, um welche Art von Planet es sich handelt – ob um einen erdähnlichen aus festen Gesteinsoberflächen oder um einen Gasriesen wie zum Beispiel Jupiter oder Saturn.

Cheops“ wird die Planeten außerdem beobachten, während sie sich auf ihrem Orbit um ihren Stern herum bewegen und von dessen Licht beschienen werden. Daraus wollen die Forscher Rückschlüsse auf die Existenz einer Atmosphäre ziehen, vielleicht sogar herausfinden, ob es am Himmel über einem Planeten Wolken gibt.

Seine Position bezieht der Satellit im Erdorbit

Anders als die bisherigen Weltraumteleskope „Kepler“ und „Tess“ von der US-Raumfahrtbehörde Nasa oder „Coros“ von der französischen Cnes hat „Cheops“ nicht die Aufgabe, neue Objekte zu finden. Vielmehr ist das Esa-Teleskop als Folgemission konzipiert, um jene Sterne genauer zu beobachten, von denen durch die vorhandenen Weltraumteleskope bereits bekannt ist, dass Planeten um sie kreisen. Unter diesen Himmelskörpern soll „Cheops“ dann jene Kandidaten herausfiltern, die am aussichtsreichsten und interessantesten erscheinen, um bei zukünftigen, wesentlich umfangreicheren Missionen noch detaillierter untersucht zu werden. Wie man sich denken kann, hoffen die Wissenschaftler dabei vor allem auf Himmelskörper, die Leben beherbergen könnten. „Cheops“ soll damit den Weg ebnen für „Plato“ und „Ariel“, die nächste Generation von Esa-Weltraumteleskopen, deren Start für das nächste Jahrzehnt geplant ist.

CHEOPS in einem Orbit über der Erde
Quelle: ESA / ATG medialab

Für seine Mission muss das „Cheops“-Teleskop nicht weit hinaus in die Tiefen des Alls reisen. Der etwa 300 Kilogramm schwere Satellit wird in rund 700 Kilometern Höhe in einer Umlaufbahn um die Erde kreisen. Von dort aus soll „Cheops“ nahezu jeden Punkt im All anpeilen können, heißt es in einer Mitteilung des Deutschen Zentrums für Luft- und Raumfahrt, das zwei Module für den Satelliten beigesteuert hat.

1,2 Gigabit Daten täglich

Insgesamt soll das Weltraumteleskop der Esa rund 500 Sternensysteme untersuchen und dabei sein Augenmerk auf Planeten legen, die größer als die Erde und kleiner als Neptun sind, also einen Durchmesser zwischen 10 000 und 50 000 Kilometern haben.

Gesteuert wird „Cheops“ vom Missionsbetriebszentrum im spanischen Torrejón de Ardoz, das Kontakt zum Teleskop hat, wenn es über die spanischen Bodenstationen der Esa fliegt. Jeden Tag soll das Teleskop dabei rund 1,2 Gigabit Beobachtungsdaten zur Erde senden.

Zunächst ist geplant, dass „Cheops“ dreieinhalb Jahre lang Sterne und ihre Planeten unter die Lupe nehmen soll; mit einer Option für eine Verlängerung der Mission auf fünf Jahre.

Quelle: https://www.fr.de/wissen/weltraumteleskop-cheops-leben-geben-koennte-zr-13298046.html

Es ist eine Mission der „S-Klasse“, die von der Europäischen Weltraumorganisation (ESA) im Herbst dieses Jahres ins Weltall befördert wird. Das „S“ steht für „small“: CHEOPS ist eine kleine Mission, ihr Name ein Kunstwort aus „Characterising Exoplanet Satellite“. Die Mission soll in erster Linie bereits bekannte, zumeist mit erdgestützten Teleskopen und der sogenannten Radialgeschwindigkeitsmethode entdeckte Exoplaneten untersuchen.

Mit der Radialgeschwindigkeitsmethode werden winzige Veränderungen im Lichtspektrum eines Sterns gemessen, die durch die Bewegung eines Sterns und eines oder mehrerer Planeten um den gemeinsamen Schwerpunkt verursacht werden. Diese Oszillation drückt sich in einer Dehnung (Rotverschiebung) oder Stauchung (Blauverschiebung) der Wellenlängen des Sternenlichts aus, dem nach dem österreichischen Physiker Christian Doppler (1803–1853) benannten „Dopplereffekt“.

Künstlerische Darstellung von CHEOPS.(Bild: ESA / ATG medialab)

Untersuchung verheißungsvoller Bewerber

Als 1995 – 40 Lichtjahre von der Erde entfernt – erstmals ein Planet entdeckt wurde, der einen sonnenähnlichen Stern umkreist, war dies eine astronomische Sensation. Gleichzeitig war es der Auftakt für eine neue Disziplin: Prof. Didier Queloz von der Universität Genf, einer der beiden Entdecker von 51 Pegasi b – so die Bezeichnung für den planetaren Begleiter des Sterns Helvetios im Sternbild des Pegasus –, nennt sie „Exoplanetologie“. Das Wort ist wiederum eine Zusammensetzung, und zwar aus den Begriffen Planetologie, die bis zu diesem Zeitpunkt auf das Sonnensystem beschränkt war, und den extrasolaren Planeten oder kurz Exoplaneten. Sie sind die neuen Mitglieder im astronomischen „Zoo“.

Heute sind schon über 4.000 Exoplaneten bekannt, entdeckt von Teleskopen auf der Erde oder von Weltraumteleskopen wie Kepler, TESS und CoRoT. Vor allem die Kepler-Mission hat viele Planetenkandidaten ausgemacht, die aber noch zu überprüfen und zu bestätigen sind. Die Hauptaufgabe von CHEOPS ist es daher, über das Vermessen der Lichtkurven von hellen Sternen bei sogenannten Transits (also den Passagen von Exoplaneten vor ihrem Stern) und deren damit verbundener minimaler Verdunklung, Planeten hinsichtlich ihrer Größe, Umlaufzeit und physikalischer Parameter zu beurteilen.

Willy Benz präsentiert CHEOPS-Satelliten im Reinraum von RUAG Space.(Bild: Adrian Moser)

Der Schlüssel liegt in der Dichte

Das Hauptziel der 2012 ausgewählten Mission ist die Untersuchung der Struktur von Exoplaneten, die größer als die Erde und kleiner als Neptun sind, also Durchmesser zwischen etwa 10.000 und 50.000 Kilometern haben. Dabei wird eine Technik verwendet, die als hochpräzise gilt: die Transitphotometrie. Voraussetzung dafür ist eine günstige Beobachtungsgeometrie. Der mit dem Dopplereffekt identifizierte Planet muss in der Beobachtungsebene des CHEOPS-Teleskops vor seinem Stern vorbeiziehen. Erst dann ist eine Lichtkurvenaufzeichnung mit der Transitmethode möglich.

Durch das Beobachten der Abdunklung des Sternenlichts während eines Transits ist es möglich, die Größe des Planeten zu bestimmen. Sie liefert in Kombination mit der Masse – die aus den Radialgeschwindigkeitsmessungen bekannt ist – ein Maß für die Dichte des Planeten. Diese ist einer der wichtigsten Parameter, um den Stern zu charakterisieren und um die Natur dieser Planeten zu erkennen. So lassen sich zum Beispiel erdähnliche Planeten mit festen Gesteinsoberflächen von Gasplaneten oder Ozeanwelten unterscheiden. Der Sensor des Teleskops ist in den Wellenlängen des sichtbaren Lichts bis ins nahe Infrarot empfindlich, also von 400 bis 1.100 Nanometer.

Mit Hilfe der von CHEOPS ermittelten Größenangabe und der mit anderen, ähnlich raffinierten Methoden ermittelten Masse eines Exoplaneten lässt sich seine Dichte berechnen. Die Astronomen wissen dann, ob es sich um einen fluffigen Gasplaneten oder um eine kompakte Gesteinskugel handelt.

Die genauere Erforschung erdähnlicher Planeten steht im Fokus des CHEOPS-Weltraumteleskops.

Oder auch um eine Kombination aus beidem. Auch größeren Wasser- oder Eismassen können sie auf diese Weise auf die Spur kommen und Exoplaneten auswählen, bei denen es sich lohnen könnte, nach einer wasser – oder methanhaltigen Atmosphäre zu suchen. Beide Gase gelten als Indikatoren für die Lebensfreundlichkeit eines Planeten.

CHEOPS wird die Planeten außerdem beobachten, während sie sich auf ihrem Orbit um ihren Zentralstern herum bewegen und von dessen Licht beschienen werden. Daraus wollen die Forscherinnen und Forscher Rückschlüsse auf die Existenz einer Atmosphäre ziehen, vielleicht sogar herausfinden, ob der beobachtete Exoplanet Wolken hat. Anders als frühere Missionen ist CHEOPS also keine „Entdeckungsmaschine“, sondern eine Folgemission, die sich auf einzelne Sterne konzentriert, von denen bereits bekannt ist, dass sie einen oder mehrere Planeten beherbergen. Neue, vor allem erdähnliche Exoplaneten finden soll ab 2026 die wesentlich größere ESA-Mission PLATO, bei der 26 einzelne Teleskope und Kameras zum Einsatz kommen.

Quelle: https://www.dlr.de/content/de/artikel/missionen-projekte/cheops/mission-cheops.html