Perseverance Rover der NASA legt erste Probe auf der Marsoberfläche ab

Nachdem das Perseverance-Team bestätigt hatte, dass sich das erste Probenröhrchen an der Oberfläche befand, positionierten sie die WATSON-Kamera am Ende des Roboterarms des Rovers, um unter den Rover zu blicken und sicherzustellen, dass das Röhrchen nicht in den Weg von gerollt war. .. Kredit: NASA/JPL-Caltech/MSSS

Das mit Gestein gefüllte Probenröhrchen wird eines von 10 sein, die ein Depot von Röhrchen bilden, die für eine Reise zur Erde von der Mars Sample Return-Kampagne in Betracht gezogen werden könnten.

Ein Titanröhrchen mit einer Gesteinsprobe ruht auf der Oberfläche des Roten Planeten, nachdem es am 21. Dezember vom Perseverance Mars Rover der NASA dort platziert wurde. In den nächsten zwei Monaten wird der Rover insgesamt 10 Röhren an dem Ort namens „Three Forks“ deponieren und das erste Probendepot der Menschheit auf einem anderen Planeten bauen. Das Depot markiert einen historischen frühen Schritt in der Mars – Probenrückgabekampagne .

Perseverance hat doppelte Proben von Felszielen genommen, die die Mission auswählt. Der Rover hat derzeit die anderen 17 Proben (einschließlich einer atmosphärischen Probe), die bisher in seinem Bauch genommen wurden. Basierend auf der Architektur der Mars Sample Return-Kampagne würde der Rover Proben an einen zukünftigen Roboterlander liefern. Der Lander würde wiederum einen Roboterarm verwenden, um die Proben in einer Sicherheitskapsel an Bord einer kleinen Rakete zu platzieren, die in die Marsumlaufbahn abheben würde, wo ein anderes Raumschiff den Probenbehälter einfangen und sicher zur Erde zurückbringen würde.

Der NASA-Rover Perseverance deponierte am 21. Dezember 2022, dem 653. Marstag oder Sol der Mission, die erste von mehreren Proben auf der Marsoberfläche.
Bildnachweis: NASA/JPL-Caltech/MSSS

Das Depot dient als Backup, falls Perseverance seine Proben nicht liefern kann. In diesem Fall würde ein Paar Sample Recovery Helicopters angefordert, um die Arbeit zu beenden.

Die erste Probe, die abgeworfen wurde, war ein kreidegroßer Kern aus magmatischem Gestein mit dem informellen Namen „Malay“, der am 31. Januar 2022 in einer Region des Jezero-Kraters des Mars namens „South Séítah“ gesammelt wurde. Das komplexe Probenahme- und Caching-System von Perseverance brauchte fast eine Stunde, um das Metallrohr aus dem Bauch des Rovers zu holen, es ein letztes Mal mit seiner internen CacheCam zu betrachten und die Probe aus etwa 89 Zentimetern Höhe auf einen sorgfältig ausgewählten Fleck der Marsoberfläche fallen zu lassen .

Aber die Arbeit war noch nicht erledigt für die Ingenieure des Jet Propulsion Laboratory der NASA in Südkalifornien, das Perseverance entwickelt hat und die Mission leitet. Nachdem sie bestätigt hatten, dass die Röhre heruntergefallen war, positionierte das Team die WATSON -Kamera am Ende des 2 Meter langen Roboterarms von Perseverance, um unter den Rover zu blicken und sicherzustellen, dass die Röhre nicht heruntergefallen war rollte in die Spur der Räder des Rovers.

Sie wollten auch sicherstellen, dass die Röhre nicht so gelandet ist, dass sie auf ihrem Ende steht (jede Röhre hat ein flaches Endstück, das als „Handschuh“ bezeichnet wird, um das Aufheben bei zukünftigen Missionen zu erleichtern). Dies geschah in weniger als 5 % der Fälle während der Tests mit dem irdischen Zwilling von Perseverance im Mars Yard des JPL. Für den Fall, dass es auf dem Mars passiert, hat die Mission eine Reihe von Befehlen für Perseverance geschrieben, um die Röhre mit einem Teil des Turms am Ende ihres Roboterarms vorsichtig umzustoßen.

In den kommenden Wochen werden sie andere Gelegenheiten haben, um zu sehen, ob Perseverance die Technik anwenden muss, wenn der Rover weitere Proben im Cache von Three Forks ablegt.

„Unsere erste Probe vor Ort zu sehen, ist ein großartiger Schlussstein für unsere Hauptmissionsphase, die am 6. Januar endet“, sagte Rick Welch, stellvertretender Projektmanager von Perseverance bei JPL. „Es ist eine schöne Ausrichtung, dass wir, während wir mit unserem Cache beginnen, auch dieses erste Kapitel der Mission abschließen.“

Quelle: https://www.jpl.nasa.gov/news/nasas-perseverance-rover-deposits-first-sample-on-mars-surface

Perseverance Rover – Ein erfolgreiches Jahr 2022/Und ein Ausblick auf 2023

Perseverance: Rover-Selfie mit Mars-Hubschrauber

Der Rover steht kurz davor, einen großen Meilenstein bei den Probenrückgabebemühungen zu erreichen – die Einrichtung seines ersten Mars – Probendepots, das voraussichtlich in den nächsten Tagen beginnen wird.

Ein weiterer großer Meilenstein nähert sich auch für das Perseverance-Team – das Ende der Hauptmission des Rovers. Das wird am 6. Januar geschehen. Aber keine Sorge: Perseverance wird danach auf einer ausgedehnten Mission weiterrollen, bei der der Rover einige aufregende und faszinierende Orte erkunden wird.

Oberflächenproben vom Marsmond Phobos/Marsmondmission MMX (JAXA, NASA, ESA) im Bau!

Martian Moons eXploration (MMX) ist eine Mission der japanischen Weltraumorganisation JAXA, mit Beiträgen von NASA, ESA, der französischen Raumfahrtagentur CNES und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR). Als dritte japanische Sample-Return-Mission soll sie an die erfolgreiche Tradition der Asteroidenmissionen Hayabusa und Hayabusa2 anknüpfen. Der Start von MMX ist für September 2024 mit einer H-3-Rakete vom japanischen Weltraumbahnhof in Tanegashima geplant. Im August 2025 erreicht die Sonde voraussichtlich den Marsorbit. Dort werden Phobos und Deimos beobachtet, der MMX-Rover auf Phobos abgesetzt und Oberflächenprobengesammelt. Diese Proben werden 2029 zur Erde zurückgebracht. 

Was macht Chinas Mars-Rover Zhurong?

Zhurong, Chinas Mars-Rover, ging am 18. Mai in Utopia Planitia in den Winterschlaf, als der Winter auf der Nordhalbkugel einsetzte. Aber Zhurong könnte mit dem Beginn des Frühlings und verbesserten Sonnenlichtbedingungen an seinem Standort (ca. am 26. Dezember) bald wieder aktiv werden.


Perseverance Rover der NASA beginnt mit dem Bau des Mars-Probendepots

10 Probenröhrchen, die auf die Marsoberfläche abgeworfen werden, damit sie in Zukunft auf der Erde untersucht werden können, enthalten eine erstaunliche Vielfalt der Geologie des Roten Planeten.

In den kommenden Tagen soll der NASA-Rover Perseverance mit dem Bau des ersten Probendepots auf einer anderen Welt beginnen. Dies wird einen entscheidenden Meilenstein in der Mars-Sample-Return – Kampagne von NASA und ESA (European Space Agency) darstellen, die darauf abzielt, Mars-Proben zur genaueren Untersuchung zur Erde zu bringen.

Der Ort, an dem die Perseverance der NASA damit beginnen wird, ihren ersten Cache mit Proben zu deponieren
Der Ort, an dem die Perseverance der NASA mit der Hinterlegung ihres ersten Probenspeichers beginnen wird, ist auf diesem Bild zu sehen, das der Marsrover am 14. Dezember 2022, dem 646. Marstag oder Sol der Mission, aufgenommen hat. 
Bildnachweis: NASA/JPL-Caltech/ASU/MSSS

Der Bau des Depots beginnt, wenn der Rover eines seiner Titan-Probenröhrchen mit einem kreidegroßen Gesteinskern aus seinem Bauch 88,8 Zentimeter auf den Boden in einem Bereich innerhalb des Jezero-Kraters mit dem Spitznamen „Three Forks“ fallen lässt. Im Laufe von etwa 30 Tagen wird Perseverance insgesamt 10 Röhren deponieren, die Proben enthalten, die die Vielfalt der Gesteinsaufzeichnungen im Jezero-Krater darstellen.

Der NASA-Marsrover Perseverance nutzte seine Mastcam-Z-Kamera, um diesen felsigen Hügel mit dem Spitznamen „Rockytop“ am 24. Juli 2022, dem 507. Marstag oder Sol, der Mission, aufzunehmen. 
Bildnachweis: NASA/JPL-Caltech/ASU/MSSS

Der Rover hat zwei Proben von jedem seiner Felsziele genommen. Die Hälfte jedes Paares wird als Backup-Set bei Three Forks deponiert, und die andere Hälfte verbleibt in Perseverance, das das primäre Mittel sein wird, um die gesammelten Proben im Rahmen der Kampagne zur Mars-Trägerrakete zu transportieren.

Hier ist eine Darstellung der 21 Probenröhrchen (mit Gesteins-, Regolith-, Atmosphären- und Zeugenmaterialien) zu sehen, die bisher vom Perseverance Mars Rover der NASA versiegelt wurden.
Hier ist eine Darstellung der 21 Probenröhrchen (mit Gesteins-, Regolith-, Atmosphären- und Zeugenmaterialien) zu sehen, die bisher vom Perseverance Mars Rover der NASA versiegelt wurden. 
Die Proben, die Perseverance in einem Depot deponiert, sind hervorgehoben in… Quelle: NASA/JPL-Caltech

„Die Proben für dieses Depot – und die Duplikate an Bord der Perseverance – sind eine unglaubliche Menge, die repräsentativ für das Gebiet ist, das während der Hauptmission erkundet wurde“, sagte Meenakshi Wadhwa, der leitende Wissenschaftler des Mars Sample Return-Programms von der Arizona State University. „Wir haben nicht nur Eruptiv- und Sedimentgesteine , die mindestens zwei und möglicherweise vier oder sogar noch mehr unterschiedliche Arten von wässriger Alteration aufweisen, sondern auch Regolith , Atmosphäre und eine Zeugenröhre .“

Wie man ein Depot baut

Eine der ersten Voraussetzungen für den Bau eines Probendepots auf dem Mars besteht darin, im Jezero-Krater einen ebenen, steinfreien Geländeabschnitt zu finden, auf dem Platz für jede zu deponierende Röhre vorhanden ist.

Diese Karte zeigt, wo der Perseverance Mars Rover der NASA 10 Proben abwerfen wird, die eine zukünftige Mission aufnehmen könnte.
Diese Karte zeigt, wo der Perseverance Mars Rover der NASA 10 Proben abwerfen wird, die eine zukünftige Mission aufnehmen könnte. Die orangefarbenen Kreise stellen Bereiche dar, in denen ein Helikopter zur Probenbergung sicher operieren könnte, um die Probenröhrchen zu erfassen.  Bildnachweis: NASA/JPL-Caltech

„Bisher brauchten Mars-Missionen nur eine gute Landezone; wir brauchen 11“, sagte Richard Cook, Mars Sample Return Program Manager am Jet Propulsion Laboratory der NASA in Südkalifornien. „Der erste ist für den Sample Retrieval Lander, aber dann brauchen wir 10 weitere in der Nähe, damit unsere Sample Recovery Helicopters Starts und Landungen durchführen und auch fahren können.“

Diese kurze Animation zeigt Schlüsselmomente der Mars-Sample-Return-Kampagne von NASA und ESA, von der Landung auf dem Mars und der Sicherung der Probenröhrchen bis hin zu deren Start von der Oberfläche und dem Transport zurück zur Erde.
 Quelle: NASA/ESA/JPL-Caltech/GSFC/MSFC

Nachdem man sich für einen geeigneten Standort entschieden hatte, bestand die nächste Aufgabe der Kampagne darin, genau herauszufinden, wo und wie die Röhren innerhalb dieses Standorts eingesetzt werden sollten. „Man kann sie nicht einfach auf einen großen Haufen werfen, weil die Bergungshubschrauber so konstruiert sind, dass sie jeweils nur mit einer Röhre interagieren“, sagte Cook. Die Helikopter sollen wie das Depot als Backup dienen. Um sicherzustellen, dass ein Hubschrauber Proben entnehmen kann, ohne den Rest des Depots zu stören oder auf Hindernisse durch gelegentliche Felsen oder Wellen zu stoßen, wird jeder Rohrabwurfort einen „Einsatzbereich“ von mindestens 18 Fuß (5,5 Meter) im Durchmesser haben. Zu diesem Zweck werden die Rohre in einem komplizierten Zickzackmuster auf der Oberfläche abgelegt, wobei jede Probe 16 bis 49 Fuß (5 bis 15 Meter) voneinander entfernt ist.

Der Erfolg des Depots hängt von der genauen Platzierung der Rohre ab – ein Vorgang, der über einen Monat dauern wird. Bevor und nachdem Perseverance jede Röhre ablegt, werden die Missionsleiter eine Vielzahl von Bildern des Rovers überprüfen. Diese Bewertung wird dem Mars Sample Return-Team auch die genauen Daten liefern, die erforderlich sind, um die Röhrchen zu lokalisieren, falls die Proben vor der Entnahme mit Staub oder Sand bedeckt werden.

Erweiterte Mission der Beharrlichkeit

Die Hauptmission von Perseverance wird am 6. Januar 2023 enden – ein Marsjahr (etwa 687 Erdtage) nach ihrer Landung am 18. Februar 2021 .

„Wir werden immer noch an der Bereitstellung des Musterdepots arbeiten, wenn unsere erweiterte Mission am 7. Januar beginnt, also ändert sich an dieser Perspektive nichts“, sagte Art Thompson, Projektmanager von Perseverance bei JPL. „Sobald der Tisch jedoch bei Three Forks gedeckt ist, werden wir uns an die Spitze des Deltas begeben. Das Wissenschaftsteam will sich da oben mal genau umsehen.“

Diese Karte zeigt die geplante Route, die der Perseverance Mars Rover der NASA im Jahr 2023 über die Spitze des Deltas des Jezero-Kraters nehmen wird.
Diese Karte zeigt die geplante Route, die der Perseverance Mars Rover der NASA im Jahr 2023 über die Spitze des Deltas des Jezero-Kraters nehmen wird. Die geplante Route des Rovers ist schwarz, während der bereits bedeckte Boden weiß ist. Wobei Weiße Punkte fiktive Wegpunkte für die Wissenschaft oder Probenentnahme auf dem Weg darstellten.
 Bildnachweis: NASA/JPL-Caltech

Diese neue wissenschaftliche Phase mit dem Namen Delta Top Campaign wird beginnen, wenn Perseverance seinen Aufstieg auf die steile Böschung des Deltas beendet und die Weite erreicht, die die obere Oberfläche des Jezero-Deltas bildet, wahrscheinlich irgendwann im Februar. Während dieser etwa achtmonatigen Kampagne wird das Wissenschaftsteam nach Felsbrocken und anderen Materialien Ausschau halten, die von anderswo auf den Mars gebracht und von dem alten Fluss abgelagert wurden, der dieses Delta bildete.

„Die Delta-Top-Kampagne ist unsere Gelegenheit, einen Blick auf den geologischen Prozess jenseits der Mauern des Jezero-Kraters zu werfen“, sagte Katie Stack Morgan vom JPL, stellvertretende Projektwissenschaftlerin für Perseverance. „Vor Milliarden von Jahren trug ein reißender Fluss Trümmer und Felsbrocken meilenweit über die Mauern von Jezero hinaus. Wir werden diese alten Flussablagerungen erkunden und Proben von ihren weitgereisten Felsbrocken und Felsen entnehmen.“

Quelle: https://www.jpl.nasa.gov/news/nasas-perseverance-rover-to-begin-building-martian-sample-depot


Mehr über die Mission

Ein Hauptziel der Mission von Perseverance auf dem Mars ist die Astrobiologie , einschließlich des Zwischenspeicherns von Proben, die möglicherweise Anzeichen für uraltes mikrobielles Leben enthalten. Der Rover wird die Geologie und das vergangene Klima des Planeten charakterisieren, den Weg für die menschliche Erforschung des Roten Planeten ebnen und die erste Mission sein, um Marsgestein und Regolith zu sammeln und zwischenzuspeichern.

Nachfolgende NASA-Missionen würden in Zusammenarbeit mit der ESA Raumfahrzeuge zum Mars schicken, um diese versiegelten Proben von der Oberfläche zu sammeln und sie zur eingehenden Analyse zur Erde zurückzubringen.

Die Mars 2020 Perseverance-Mission ist Teil des Mond-zu-Mars-Explorationsansatzes der NASA, der Artemis – Missionen zum Mond umfasst, die zur Vorbereitung der menschlichen Erforschung des Roten Planeten beitragen werden.

JPL, das von Caltech für die NASA verwaltet wird, baute und verwaltet den Betrieb des Perseverance-Rover.

Mehr zum Thema Ausdauer:

https://mars.nasa.gov/mars2020/

Mehr über die Kampagne

Die NASA-ESA Mars Sample Return Campaign wird das Verständnis der Menschheit vom Mars revolutionieren, indem wissenschaftlich ausgewählte Proben zur Untersuchung mit den modernsten Instrumenten auf der ganzen Welt zur Erde gebracht werden. Die Kampagne würde ein Ziel zur Erforschung des Sonnensystems erfüllen, das seit den 1970er Jahren und in den letzten drei Planetary Decadal Surveys der National Academy of Sciences hohe Priorität hatte.

Diese strategische Partnerschaft zwischen NASA und ESA wäre die erste Mission, die Proben von einem anderen Planeten zurückbringt, und der erste Start von der Oberfläche eines anderen Planeten. Die von Perseverance während der Erkundung eines alten Flussdeltas gesammelten Proben bieten vermutlich die beste Gelegenheit, die frühe Entwicklung des Mars, einschließlich des Potenzials für Leben, aufzudecken. Durch ein besseres Verständnis der Geschichte des Mars würden wir unser Verständnis aller Gesteinsplaneten im Sonnensystem, einschließlich der Erde, verbessern.

Erfahren Sie hier mehr über das Musterrückgabeprogramm von Mars:

https://mars.nasa.gov/msr/

Europa bittet um eine selbstgebaute Landeplatform für den in Schwierigkeiten geratenen ExoMars-Rover

Russland sollte die Landeplattform bereitstellen, aber sie ist nicht mehr Teil des ExoMars-Programms.

Europa plant den Bau eines neuen Landers für den in Schwierigkeiten geratenen Rover Rosalind Franklin, nachdem es die Zusammenarbeit mit Russland wegen des Krieges in der Ukraine beendet hat. (Bildnachweis: ESA/ATG medialab)

Die wissenschaftlichen Ziele, die für Europas bedrängten ExoMars-Rover gesetzt wurden, sind immer noch einzigartig, sagten Beamte der Europäischen Weltraumorganisation (ESA), als sie Pläne aufstellten, die Mitgliedsstaaten zu bitten, ein neues selbstgebautes Abstiegsmodul zu finanzieren.

Der europäische ExoMars -Rover mit dem Namen Rosalind Franklin sollte im September auf einer russischen Proton -Rakete vom Kosmodrom Baikonur zum Roten Planeten starten . Der Rover, der mit einem 6,6 Fuß langen (2 Meter) unterirdischen Bohrer nach Spuren des Lebens auf dem Mars suchen sollte, sollte in einem in Russland gebauten Eingangs- und Abstiegsmodul an die Oberfläche getragen werden. Nach jahrelangen Verzögerungen waren die Dinge für einen Start in diesem Jahr endlich auf Kurs – bis die russische Invasion in der Ukraine der Partnerschaft ein politisches Ende setzte. 

Aber die ESA, die seit 2004 an ExoMars arbeitet, konnte es nicht rechtfertigen, die Flaggschiff-Mission aufzugeben, die die Karrieren einer Generation von Wissenschaftlern in Anspruch genommen hat. Auf einer kürzlich abgehaltenen Pressekonferenz bestätigte der ESA-Direktor für bemannte und robotische Exploration, David Parker, Pläne, ein brandneues, in Europa hergestelltes Eintritts- und Abstiegsmodul für den Rover zu bestellen, mit dem Ziel, 2028 zum Mars zu starten Der Rover konnte in Oxia Planum landen , einem alten tonreichen Becken in der Nähe der nördlichen Tropen des Mars, das aufgrund seiner früheren Präsenz von Wasser und seiner Fülle an Sedimenten ausgewählt wurde, die wertvolle Biomarker beherbergen könnten.

Laut BBC(öffnet in neuem Tab), wird die ESA 360 Millionen Euro beantragen, um die Arbeiten am neuen Landesystem anzukurbeln, wobei in den Folgejahren wahrscheinlich weitere Mittel benötigt werden. Die ESA hat bereits rund 1,3 Milliarden Euro für das ExoMars-Programm ausgegeben, zu dem auch ein Orbiter gehört, der seit 2017 die Atmosphäre und Oberfläche des Mars untersucht. Die ESA wird den Plan den Delegierten ihrer 22 Mitgliedsstaaten auf einer Ministerkonferenz im November vorstellen .

„Wir müssen abwarten, ob die [Mitgliedsstaaten] beschließen, mit dem Projekt fortzufahren“, sagte Parker. „Dieses Konzept wird nun als Teil des Pakets des Generaldirektors im Rahmen des Explorationsprogramms [ESA] zur Entscheidung auf der Ministerkonferenz [Konferenz] vorgeschlagen.“

Die europäische Wissenschaftsgemeinschaft unterstütze den Plan voll und ganz, sagte ESA-Generaldirektor Josef Aschbacher auf der Pressekonferenz, da keine andere aktuelle oder geplante Marsmission in der Lage sei, Proben aus einem so tiefen Untergrund zu entnehmen. In diesen verborgenen Bodenschichten sind die Überlebenschancen für organische Verbindungen aus dem vergangenen mikrobiellen Leben am höchsten. 

„Es ist immer noch die fortschrittlichste und interessanteste Wissenschaft bei der Suche nach Leben auf dem Mars“, sagte Aschbacher. „[Der ExoMars-Rover] wird das einzige Instrument mit einem Bohrer sein, der bis zu 2 Meter tief in die Oberfläche eindringt und diese Fähigkeit hätte, nach mikrobiellem Leben auf dem Mars zu suchen. Es ist keine andere ähnliche Mission geplant.“

Wissenschaftler glauben, dass der Mars bis vor etwa 3,7 Milliarden Jahren der Erde ziemlich ähnlich sah , mit reichlich flüssigem Wasser, das auf seiner Oberfläche floss. Die Bedingungen auf beiden Planeten waren so ähnlich, dass Wissenschaftler glauben, dass einfache mikrobielle Lebensformen ungefähr zur gleichen Zeit auf dem Mars entstanden sein könnten wie auf der Erde. Dann jedoch trennten sich die Evolutionspfade der beiden Planeten. Der Mars verlor sein globales Magnetfeld, was dazu führte, dass der größte Teil seiner Atmosphäre abgetragen wurde, die den Planeten warm gehalten und seine Oberfläche vor der harten, sterilisierenden Sonnenstrahlung abgeschirmt hatte. Mars wurde zu dem trockenen, unwirtlichen Wort, das wir heute sehen. 

Da die Marsoberfläche heute in ultraviolettes Licht getaucht ist, glauben Wissenschaftler, dass die Suche nach Spuren des vergangenen Lebens tief im Untergrund höhere Erfolgschancen verspricht. Die NASA-Rover Curiosity und Perseverance sind mit Bohrern ausgestattet, aber diese sind viel kürzer und können nur die ersten paar Zentimeter des Marsgesteins erkunden. 

Quelle: https://www.space.com/europe-homegrown-lander-exomars-rover

Doma GIF - Find & Share on GIPHY
Die beiden Herren haben recht, ExoMars ist für die Astrobiologie immer noch Wertvoll und von größter Bedeutung. ESA und Europa sollen sich auch an der suche „nach spuren des Lebens“ beteiligen. Astrobiologie ein spannendes Wissenschaftswelt mit interessanten Fragestellungen, dem ESA und Europa mehr nachgehen sollte. So wie Ihre Kollegen in den USA (NASA), die der Astrobiologie seit Jahren Intensiv nach gehen. Ich kenne die Studien und Exomars gehört auf den Mars und nicht in einer Lagerhalle außerdem rechtfertigen diese höhere Kosten und weitere finanzielle mittel. und weiter Jetzt braucht es nur noch ein „Go“ bei der Ministerkonferenz im November 2022.

Wow, ESA beantragt eine eigene Landestufe.

„Die europäische Wissenschaftsgemeinschaft unterstütze den Plan voll und ganz, sagte ESA-Generaldirektor Josef Aschbacher auf der Pressekonferenz, da keine andere aktuelle oder geplante Marsmission in der Lage sei, Proben aus einem so tiefen Untergrund zu entnehmen“

„Es ist immer noch die fortschrittlichste und interessanteste Wissenschaft bei der Suche nach Leben auf dem Mars“, sagte Aschbacher. „[Der ExoMars-Rover] wird das einzige Instrument mit einem Bohrer sein, der bis zu 2 Meter tief in die Oberfläche eindringt und diese Fähigkeit hätte, nach mikrobiellem Leben auf dem Mars zu suchen. Es ist keine andere ähnliche Mission geplant.“

Die ESA wird den Plan den Delegierten ihrer 22 Mitgliedsstaaten auf einer Ministerkonferenz im November vorstellen .

„Wir müssen abwarten, ob die [Mitgliedsstaaten] beschließen, mit dem Projekt fortzufahren“, sagte Parker. „Dieses Konzept wird nun als Teil des Pakets des Generaldirektors im Rahmen des Explorationsprogramms [ESA] zur Entscheidung auf der Ministerkonferenz [Konferenz] vorgeschlagen.“

Um so mehr freue ich mich auf ESA-Ministerkonferenz im November 2022

Christian Dauck

Perseverance macht entscheidenden Fund – „Mit den richtigen Werkzeugen am richtigen Ort“

Der Nasa-Rover „Perseverance“ erforscht den Mars seit Februar 2021 – und hat bereits organisches Material gefunden. © NASA/JPL-Caltech/ASU/MSSS

In einem Flussdelta auf dem Mars macht der Nasa-Rover „Perseverance“ einen entscheidenden Fund. Doch nun müssen die Forschenden erst einmal geduldig sein.

Pasadena – Als die US-Raumfahrtorganisation Nasa eine Region namens Jezero-Krater als Landeplatz für den Rover „Perseverance“ auf dem Mars auswählte, hatten die Verantwortlichen bereits einen Plan: Sie wollten mithilfe des Roboters eine Gegend erkunden, die auf Aufnahmen, die vorab von Raumsonden gemacht wurden, wie ein Flussdelta aussah. Bereits seit Juli 2022 erforscht „Perseverance“ nun das Delta – und liefert nun besonders wichtige Proben.

„Wir haben den Jezero-Krater für die Erforschung durch ‚Perseverance‘ ausgewählt, weil wir dachten, dort gebe es die beste Chance auf wissenschaftlich exzellente Proben“, erklärt Nasa-Wissenschaftsdirektor Thomas Zurbuchen in einer Nasa-Mitteilung und ergänzt: „Jetzt wissen wir, dass wir den Rover an den richtigen Ort geschickt haben.“ Der Mars-Rover habe eine „unglaubliche Diversität von Proben“ gesammelt, die in Zukunft von einer weiteren Mars-Mission zur Erde zurückgebracht werden sollen. „Ich denke, man kann mit Sicherheit sagen, dass dies zwei der wichtigsten Proben sind, die wir auf dieser Mission sammeln werden“, betont auch David Shuster, der sich mit der Rückholung der Proben vom Mars beschäftigt.

Nasa-Rover „Perseverance“ findet organisches Material auf dem Mars

Das Delta, in dem der Mars-Rover „Perseverance“ sich befindet, entstand vor etwa 3,5 Milliarden Jahren. Es markiert die Stelle, an der in der Vergangenheit wohl ein marsianischer Fluss in einen See überging. Der Rover „Perseverance“ untersucht derzeit das Sedimentgestein im Delta, das entstand, als Partikel verschiedener Größe sich in der einst nassen Umgebung absetzten. „Die Steine, die wir untersucht haben, haben die höchste Konzentration von organischer Materie, die wir während der Mission bisher gefunden haben“, erklärt „Perseverance“-Projektwissenschaftler Ken Farley bei einer Nasa-Pressekonferenz. „Organische Moleküle sind die Bausteine des Lebens, daher ist es sehr interessant, dass wir Gestein haben, das in einer bewohnbaren Umgebung in einem See abgelagert wurde und organisches Material enthält.“

Die Steine, die wir untersucht haben, haben die höchste Konzentration von organischer Materie, die wir während der Mission bisher gefunden haben.

– Ken Farley, „Perseverance“-Projektwissenschaftler –

Bereits am 20. Juli hat das „Perseverance“ Instrument SHERLOC Nasa-Angaben zufolge eine Probe genommen, in der die Forschenden eine Klasse organischer Moleküle gefunden haben, die mit Sulfatmineralien verwandt sind. Sulfatmineralien, die in Sedimentgestein gefunden werden, können wichtige Informationen über die Wasser-Umgebung liefern, in der sie entstanden sind. „Diese Beziehung deutet darauf hin, dass während der Verdunstung des Sees sowohl Sulfate als auch organische Stoffe in diesem Gebiet abgelagert, konserviert und konzentriert wurden“, erläutert die SHERLOC-Wissenschaftlerin Sunanda Sharma. „Ich persönlich finde diese Ergebnisse so bewegend, weil ich das Gefühl habe, dass wir zu einem sehr entscheidenden Zeitpunkt und mit den richtigen Werkzeugen am richtigen Ort sind.“

Mars: Organische Moleküle in einer einst bewohnbaren Region gefunden

Unter dem Begriff „organische Moleküle“ versteht die Nasa eine Vielzahl von Verbindungen, die hauptsächlich aus Kohlenstoff bestehen und in der Regel Wasserstoff- und Sauerstoff-Atome enthalten. Auch andere Elemente wie Stickstoff, Schwefel und Phosphor können darin enthalten sein. Es gibt jedoch auch chemische Prozesse, bei denen solche Moleküle ohne die Mitwirkung biologischen Lebens entstehen – ein solcher Fund muss daher nicht zwangsweise ein Zeichen für früheres Leben auf dem Mars sein. Tatsächlich haben „Perseverance“ und auch sein Vorgänger, der Rover „Curiosity“ bereits zuvor organisches Material auf dem Mars gefunden. Doch die Tatsache, dass es dieses Mal in einer Region gefunden wurde, in der früher nachweislich flüssiges Wasser existierte und die demnach bewohnbar gewesen sein könnte, ist für die Forschenden ein entscheidender Hinweis.

„Der Nachweis dieser Klasse von organischen Stoffen allein bedeutet zwar nicht, dass es dort definitiv Leben gab, aber diese Beobachtungen ähneln einigen Dingen, die wir hier auf der Erde gesehen haben“, erklärt Sharma. „Um es einfach auszudrücken: Wenn dies eine Schatzsuche nach potenziellen Anzeichen für Leben auf einem anderen Planeten ist, dann ist organische Materie ein Anhaltspunkt. Und wir bekommen immer stärkere Hinweise, während wir uns durch das Delta bewegen.“

Nasa und Esa wollen Bodenproben vom Mars zur Erde holen

Nach solch wichtigen Funden möchten Wissenschaftlerinnen und Wissenschaftler am liebsten sofort an die Arbeit gehen und das Material genau untersuchen. Doch für eine detaillierte Erforschung des gefundenen organischen Materials müssen sich die Forschenden noch eine ganze Weile gedulden. „So fähig unsere Instrumente an Bord von ‚Perseverance‘ auch sind, weitere Schlussfolgerungen über den Inhalt der Probe müssen abgewartet werden, bis sie zur Erde zurückgebracht wird“, sagt Farley. Die sogenannte „Mars Sample Return“-Mission, bei der die Nasa mit der europäischen Raumfahrtorganisation Esa kooperiert, soll von „Perseverance“ eingesammelte Mars-Proben mithilfe zweier kleiner Helikopter-Drohnen einsammeln und zur Erde zurückbringen – allerdings erst in den 2030er Jahren, ein genaues Datum steht noch nicht fest.

Quelle: https://www.fr.de/wissen/mars-nasa-rover-perseverance-macht-entscheidenden-fund-organisches-material-wasser-delta-91792241.html


Perseverance Rover sammelt organisch reiche Marsproben für die zukünftige Rückkehr zur Erde

Das alte Mars-Flussdelta, das Perseverance erforscht, wird dem Hype gerecht.

Die Suche des Rovers Perseverance nach Anzeichen von Leben auf dem alten Mars hat erheblich zugenommen.

In den letzten Monaten hat Perseverance die Überreste eines alten Flussdeltas im Jezero-Krater des Mars erkundet, der vor Milliarden von Jahren einen großen See beherbergte. Das Vorhandensein dieses Deltas ist einer der Hauptgründe, warum die NASA den Rover in der Größe eines Autos nach Jezero geschickt hat, und der Standort hat seine Rechnung bisher erfüllt, sagten Mitglieder des Missionsteams.

Perseverance hat seit Anfang Juli vier Proben aus der Delta-Formation entnommen. Alle vier wurden in Felsen gebohrt, die zeigen, dass dieser Teil des Mars in der alten Vergangenheit wahrscheinlich erdähnliche Organismen unterstützt haben könnte – und möglicherweise sogar Anzeichen eines solchen mikrobiellen Lebens bewahrt.

„Die Felsen, die wir im Delta untersucht haben, haben die höchste Konzentration an organischem Material , die wir bisher auf der Mission gefunden haben“, sagte Ken Farley, Wissenschaftler des Perseverance-Projekts vom California Institute of Technology in Pasadena, während einer Pressekonferenz am Donnerstag ( 15. Sept.). 

„Und natürlich sind organische Moleküle die Bausteine ​​des Lebens“, fügte Farley hinzu. „Das ist also alles sehr interessant, da wir Steine ​​haben, die in einer bewohnbaren Umgebung in einem See abgelagert wurden, der organische Stoffe enthält.“

Ein Delta-Merkmal, das Perseverance kürzlich beprobt und untersucht hat, ein 3 Fuß breiter (0,9 Meter) Felsen, den das Team Wildcat Ridge nennt, ist besonders faszinierend. Wildcat ist ein feinkörniger Schlammstein, der sich wahrscheinlich am Grund des alten Sees von Jezero gebildet hat, sagten Teammitglieder. Das SHERLOC-Instrument (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) von Perseverance fand heraus, dass das Gestein mit organischen Stoffen gefüllt ist, die räumlich mit schwefelhaltigen Mineralien, sogenannten Sulfaten, verbunden sind.  

„Diese Korrelation legt nahe, dass beim Verdampfen des Sees sowohl Sulfate als auch organische Stoffe in diesem Gebiet abgelagert, konserviert und konzentriert wurden“, sagte SHERLOC-Wissenschaftlerin Sunanda Sharma vom Jet Propulsion Laboratory der NASA in Südkalifornien während der Pressekonferenz am Donnerstag. 

„Auf der Erde ist bekannt, dass Sulfatablagerungen organische Stoffe konservieren und Lebenszeichen enthalten können, die als Biosignaturen bezeichnet werden“, fügte Sharma hinzu. „Das macht diese Proben und diese Reihe von Beobachtungen zu den faszinierendsten, die wir bisher in der Mission gemacht haben, und erfüllt einen Teil der Aufregung, die das Team hatte, als wir uns der Deltafront näherten.“

Dieses aus mehreren Bildern zusammengesetzte Mosaik zeigt einen Felsvorsprung namens „Wildcat Ridge“, wo der Rover zwei Gesteinskerne extrahierte und einen kreisförmigen Fleck abschleifte, um die Zusammensetzung des Gesteins zu untersuchen.  (Bildnachweis: NASA/JPL-Caltech/ASU/MSSS)

Farley und Sharma betonten jedoch, dass diese marsianischen Verbindungen nicht als Biosignaturen betrachtet werden können. Organische Stoffe können durch rein geologische Prozesse erzeugt und eingelagert werden, und die bisher von Perseverance gesammelten Daten sagen uns nicht genug über das Ursprungsszenario, um eine Aussage zu treffen.

In der Tat wird es für das Missionsteam sehr schwierig sein, eine solche Bestimmung allein anhand der Beobachtungen des Rovers zu treffen, sagte Farley. Schließlich ist die Aufgabe komplex und die Beweislast, die ein behaupteter Nachweis von außerirdischem Leben erfüllen muss, sehr hoch.

Diese Realität ist in das Missionsdesign von Perseverance integriert. Wenn alles nach Plan läuft, werden die Proben, die Perseverance sammelt, bereits 2033 durch eine gemeinsame Kampagne der NASA und der Europäischen Weltraumorganisation (ESA) zur Erde zurückgebracht. Sobald die Proben hier sind, können Wissenschaftler auf der ganzen Welt sie mit einer Vielzahl von Instrumenten untersuchen, von denen viele viel größer und komplizierter sind als alles, was man auf einen Mars-Rover quetschen kann.

Perseverance trägt 43 Probenröhrchen, von denen 15 bereits verschlossen sind. Zwölf enthalten ausgebohrte Gesteinskerne, eine ist eine atmosphärische Probe (das Ergebnis von Perseverances erstem Gesteinsprobenahmeversuch, der nicht nach Plan verlief ) und zwei sind „Zeugenröhren“. Das Missionsteam wird die Zeugenröhrchen verwenden, um festzustellen, welche Materialien in den Marsproben, falls vorhanden, Verunreinigungen von der Erde sein könnten.

Der Probenrückführungsplan sieht einen von der ESA bereitgestellten Earth Return Orbiter (ERO) und einen von der NASA gebauten Lander vor, die Ende 2027 bzw. Anfang 2028 zum Mars starten sollen. Perseverance wird zum Lander hinüberfahren und seine Proben ablegen, die dann an Bord einer vom Lander getragenen Rakete von der Marsoberfläche abheben. Die ERO wird die Proben in der Marsumlaufbahn einfangen und zurück zur Erde transportieren.

Beharrlichkeit, die im Februar 2021 mit dem winzigen Technologiedemonstrationshubschrauber Ingenuity gelandet ist, sollte Ende der 2020er Jahre noch gesund genug sein, um diese Probenlieferungsarbeit zu leisten, sagten NASA-Beamte. Immerhin ist der Curiosity-Rover der NASA , der den gleichen grundlegenden Körperplan und das gleiche Kernenergiesystem wie Perseverance hat, mehr als 10 Jahre nach der Landung im Gale-Krater des Roten Planeten immer noch stark.

Aber auch die NASA und die ESA haben einen Backup-Plan. Beharrlichkeit sammelt zwei Proben von jedem Gestein, das es entkernt, eine, um sie an Bord zu behalten, und eine andere, um sie in einem oder mehreren „Depots“ auf Jezeros Boden zu lagern. Wenn Perseverance also nicht in der Lage ist, die Proben selbst zu übergeben, wird der Rücklander in der Nähe der Probenlager landen und die Röhrchen einzeln mit zwei Hubschraubern einsammeln.

Diese Hubschrauber werden an Bord des Landers starten und Ingenuity sehr ähnlich sein, das nach 31 Flügen auf dem Mars immer noch stark ist . Die Helikopter zum Sammeln von Proben müssen jedoch etwas sperriger sein als Ingenuity, da sie mit Rädern ausgestattet sind, die ihnen helfen, zu den Probenröhrchen zu rollen.

Das Perseverance-Team hat bereits einen möglichen Ort für das erste Proben-Cache-Depot ausgewählt – einen schönen, flachen Teil von Jezeros Boden, der ein sicherer Landeplatz für einen Lander wäre. Am 19. Oktober werden die Teammitglieder ein „Go/No Go“-Meeting abhalten, bei dem festgestellt wird, ob sie bereit sind, dort Probenröhrchen abzusetzen, sagte NASA-Planetenwissenschaftschefin Lori Glaze während des heutigen Briefings.

Wenn die Entscheidung „go“ lautet, wird Perseverance 10 bis 11 Probenröhrchen vor Ort zwischenspeichern, ein Vorgang, der voraussichtlich etwa zwei Monate dauern wird.

Quelle: https://www.space.com/perseverance-rover-mars-samples-rich-organics


Perseverance Rover der NASA untersucht geologisch reiches Marsgelände

Der Perseverance-Rover der NASA lässt seinen Roboterarm um einen Felsvorsprung namens „Skinner Ridge“ im Jezero-Krater des Mars herum arbeiten.
Der Perseverance-Rover der NASA lässt seinen Roboterarm um einen Felsvorsprung namens „Skinner Ridge“ im Jezero-Krater des Mars herum arbeiten. Dieses Mosaik besteht aus mehreren Bildern und zeigt geschichtete Sedimentgesteine ​​vor einer Klippe im Delta sowie eine der Stellen, an denen der Rover einen kreisförmigen Fleck abgeschliffen hat, um die Zusammensetzung eines Gesteins zu analysieren.Bildnachweis: NASA/JPL-Caltech/ASU/MSSS

Der Perseverance-Rover der NASA befindet sich in seiner zweiten wissenschaftlichen Kampagne und sammelt Gesteinskernproben von Merkmalen in einem Gebiet, das von Wissenschaftlern seit langem als beste Aussichten für die Suche nach Anzeichen für uraltes mikrobielles Leben auf dem Mars angesehen wird. Der Rover hat seit dem 7. Juli vier Proben aus einem alten Flussdelta im Jezero-Krater des Roten Planeten gesammelt, was die Gesamtzahl der wissenschaftlich überzeugenden Gesteinsproben auf 12 erhöht.

„Wir haben den Jezero-Krater für Perseverance zur Erkundung ausgewählt, weil wir dachten, dass er die besten Chancen hat, wissenschaftlich hervorragende Proben zu liefern – und jetzt wissen wir, dass wir den Rover an den richtigen Ort geschickt haben“, sagte Thomas Zurbuchen, stellvertretender NASA-Administrator für Wissenschaft in Washington. „Diese ersten beiden wissenschaftlichen Kampagnen haben eine erstaunliche Vielfalt an Proben hervorgebracht, die von der Mars Sample Return-Kampagne zur Erde zurückgebracht werden können .“

Der Jezero-Krater ist 45 Kilometer breit und beherbergt ein Delta – ein uraltes fächerförmiges Gebilde, das sich vor etwa 3,5 Milliarden Jahren am Zusammenfluss eines Marsflusses und eines Sees gebildet hat. Perseverance untersucht derzeit die Sedimentgesteine ​​des Deltas, die entstanden, als sich Partikel unterschiedlicher Größe in der einst wässrigen Umgebung ablagerten. Während seiner ersten wissenschaftlichen Kampagne erkundete der Rover den Kraterboden und fand magmatisches Gestein , das sich tief unter der Erde aus Magma oder während vulkanischer Aktivität an der Oberfläche bildet.  

„Das Delta mit seinen vielfältigen Sedimentgesteinen steht in schönem Kontrast zu den magmatischen Gesteinen – gebildet aus der Kristallisation von Magma – die auf dem Kraterboden entdeckt wurden“, sagte Ken Farley, Projektwissenschaftler von Perseverance vom Caltech in Pasadena, Kalifornien. „Diese Gegenüberstellung bietet uns ein umfassendes Verständnis der geologischen Geschichte nach der Entstehung des Kraters und eine vielfältige Probenfolge. Wir haben zum Beispiel einen Sandstein gefunden, der Körner und Gesteinsfragmente trägt, die weit entfernt vom Jezero-Krater entstanden sind – und einen Schlammstein, der faszinierende organische Verbindungen enthält.“

„Wildcat Ridge“ ist der Name eines etwa 1 Meter breiten Felsens, der sich wahrscheinlich vor Milliarden von Jahren gebildet hat, als sich Schlamm und feiner Sand in einem verdunstenden Salzwassersee absetzten. Am 20. Juli schleifte der Rover einen Teil der Oberfläche von Wildcat Ridge ab, um das Gebiet mit dem Instrument Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals oder SHERLOC zu analysieren .  

Die Analyse von SHERLOC zeigt, dass die Proben eine Klasse organischer Moleküle aufweisen, die räumlich mit denen von Sulfatmineralien korreliert sind. Sulfatmineralien, die in Sedimentgesteinsschichten gefunden werden, können wichtige Informationen über die wässrigen Umgebungen liefern, in denen sie sich gebildet haben.

Was ist organische Materie?

Organische Moleküle bestehen aus einer Vielzahl von Verbindungen, die hauptsächlich aus Kohlenstoff bestehen und normalerweise Wasserstoff- und Sauerstoffatome enthalten. Sie können auch andere Elemente wie Stickstoff, Phosphor und Schwefel enthalten. Während es chemische Prozesse gibt, die diese Moleküle produzieren, die kein Leben erfordern, sind einige dieser Verbindungen die chemischen Bausteine ​​des Lebens. Das Vorhandensein dieser spezifischen Moleküle wird als potenzielle Biosignatur angesehen – eine Substanz oder Struktur, die ein Beweis für vergangenes Leben sein könnte, aber auch ohne das Vorhandensein von Leben produziert worden sein könnte.

Im Jahr 2013 fand der Marsrover Curiosity der NASA Hinweise auf organisches Material in Gesteinspulverproben, und Perseverance hat zuvor organisches Material im Krater Jezero entdeckt . Aber im Gegensatz zu dieser früheren Entdeckung wurde diese jüngste Entdeckung in einem Gebiet gemacht, in dem in der fernen Vergangenheit Sedimente und Salze unter Bedingungen in einem See abgelagert wurden, in denen möglicherweise Leben existierte. Bei seiner Analyse von Wildcat Ridge registrierte das SHERLOC-Instrument die bisher häufigsten organischen Nachweise auf der Mission.  

„In der fernen Vergangenheit wurden der Sand, der Schlamm und die Salze, aus denen heute die Wildcat-Ridge-Probe besteht, unter Bedingungen abgelagert, unter denen möglicherweise Leben hätte gedeihen können“, sagte Farley. „Die Tatsache, dass die organische Substanz in einem solchen Sedimentgestein gefunden wurde – das dafür bekannt ist, Fossilien des alten Lebens hier auf der Erde zu bewahren – ist wichtig. Doch so leistungsfähig unsere Instrumente an Bord von Perseverance auch sind, weitere Schlussfolgerungen bezüglich des Inhalts der Wildcat-Ridge-Probe müssen warten, bis sie im Rahmen der Mars-Sample-Return-Kampagne der Agentur zur eingehenden Untersuchung zur Erde zurückgebracht wird.“

Der erste Schritt der NASA-ESA (European Space Agency) Mars Sample Return-Kampagne begann, als Perseverance im September 2021 seine erste Gesteinsprobe entkernte . Zusammen mit seinen Gesteinskernproben hat der Rover insgesamt eine atmosphärische Probe und zwei Zeugenröhren gesammelt davon sind im Bauch des Rovers gespeichert.

Die geologische Vielfalt der bereits im Rover transportierten Proben ist so gut, dass das Rover-Team in etwa zwei Monaten die Ablagerung ausgewählter Röhren in der Nähe der Basis des Deltas in Betracht zieht. 

Nach dem Ablegen des Caches wird der Rover seine Delta-Erkundungen fortsetzen.

„Ich habe einen Großteil meiner Karriere die Bewohnbarkeit und Geologie des Mars studiert und weiß aus erster Hand, welchen unglaublichen wissenschaftlichen Wert es hat, einen sorgfältig gesammelten Satz Marsgestein zur Erde zurückzubringen“, sagte Laurie Leshin, Direktorin des Jet Propulsion Laboratory der NASA in Südkalifornien. „Dass wir Wochen von der Bereitstellung der faszinierenden Proben von Perseverance und nur wenige Jahre davon entfernt sind, sie zur Erde zu bringen, damit Wissenschaftler sie bis ins kleinste Detail untersuchen können, ist wirklich phänomenal. Wir werden so viel lernen.“

Quelle: https://www.nasa.gov/press-release/nasa-s-perseverance-rover-investigates-geologically-rich-mars-terrain

Perseverance geht bald zu „Enchanted Lake“

Dieses Bild zeigt die Rückseite von Coring Bit 2 im Bit-Karussell des Perseverance Mars Rovers der NASA.
Perseverance Coring Bit: Aufgenommen am 17. August 2022, dem 531. Marstag oder Sol, der Mission, zeigt die Rückseite von Coring Bit 2 im Bitkarussell 
des Marsrover Perseverance der NASA. Auf der linken Seite des Meißels ist ein welliges, fadenförmiges Stück Fremdkörper zu sehen. Bohrkrone 2 wurde kürzlich verwendet, um Sedimentgestein bei „Wildcat Ridge“ zu beproben. Bildnachweis: NASA/JPL-Caltech/MSSS. Bild herunterladen >

Nach einem längeren Aufenthalt auf „Wildcat Ridge“ bereitet sich das Perseverance-Team darauf vor, nach Südwesten zu einem weiteren Sedimentaufschluss namens Enchanted Lake im Delta des Jezero-Kraters zu fahren. Diese Seite hat  unser Wissenschaftsteam verzaubert,  seit wir sie im April zum ersten Mal besucht haben. 

Der NASA-Rover Mars Perseverance hat dieses Bild mit seiner linken Mastcam-Z-Kamera aufgenommen.  Mastcam-Z ist ein Kamerapaar, das sich hoch oben am Mast des Rovers befindet.
Enchanted View of Jezero Rocks​:  Dieses Bild des Felsvorsprungs „Enchanted Lake“, informell nach einem Wahrzeichen in Alaskas Katmai National Park and Preserve benannt, wurde von einer der Hazard Avoidance Cameras (Hazcams) auf dem Mars Perseverance Rover der NASA aufgenommen. Bildnachweis: NASA/JPL-Caltech/ASU. Bild herunterladen >

Die Fahrt zum „Enchanted Lake“ soll in den nächsten Tagen mit Ankunft Anfang September beginnen.

Bevor wir mit der Fahrt beginnen, werden wir unsere Bemühungen fortsetzen, die zwei kleinen, fadenartigen Trümmerteile von Fremdkörpern (FOD) zu untersuchen, die auf einem der Bohrmeißel des Rovers entdeckt wurden. Das Rover-Team fühlt sich aufgrund der Fortschritte bei seiner  FOD-Untersuchung wohl damit, voranzukommen . Seit der erste 5. August in Bildern des Probenentnahmesystems des Rovers identifiziert wurde, nachdem eine 12. Gesteinskernprobe entnommen wurde, stand die FOD im Mittelpunkt mehrerer methodischer diagnostischer Aktivitäten, um die Beschaffenheit der Trümmer besser zu verstehen. 

Wir haben dem Rover befohlen, Komponenten zu bewegen, zu drehen oder zu vibrieren, von denen wir glauben, dass sie FOD beherbergen könnten. Und wir haben mehrere Sätze von Bildern der Komponenten aus verschiedenen Winkeln und bei unterschiedlichen Lichtverhältnissen von Rover-Kameras erhalten: Mastcam-Z, Navcam, Hazcam, Supercam und sogar die WATSON-Kamera (Wide Angle Topographic Sensor for Operations and eNgineering). auf dem Turm des Rovers. Schließlich bestätigt eine gründliche Überprüfung der jüngsten Bohrkern- und Bitaustauschaktivitäten, dass sie alle nominell und ohne Anzeichen einer Störung durch das FOD durchgeführt wurden.

Die Analyse der letzten Bildgebungsrunde, die heute früher heruntergeladen wurde, zeigt, dass die beiden kleinen Teile zwar im oberen Teil des Bohrfutters sichtbar bleiben, aber keine neue FOD beobachtet wurde. Darüber hinaus zeigten Bilder, die vom Boden unter dem Roboterarm und -turm sowie vom Roverdeck aufgenommen wurden, ebenfalls keine neuen FOD.

Unser gegenwärtiger Status erinnert mich an ein anderes FOD-Problem, auf das wir im Januar dieses Jahres gestoßen sind. Damals waren es  kleine Kieselsteine ​​im Bit-Karussell . Obwohl wir wussten, dass das Karussell robust und für den Betrieb in einer schmutzigen Umgebung gebaut war, nahmen wir uns die Zeit, die Situation besser zu verstehen, bevor wir weitermachten. Ich denke, das gleiche wird hier gelten. Unsere Bohrmaschine ist zudem robust und für schmutzige Umgebungen ausgelegt. Dies, zusammen mit der Tatsache, dass wir keine neuen Trümmer entdeckt haben, gibt uns die Zuversicht, dass wir mit unserer wissenschaftlichen Untersuchung des Jezero-Deltas (sowohl buchstäblich als auch im übertragenen Sinne) fortfahren können, während wir weiterhin alles tun, um den Ursprung besser zu verstehen die Trümmer.

Nächster Halt, der verzauberte See!

Quelle: https://mars.nasa.gov/mars2020/mission/status/397/perseverance-soon-heads-to-enchanted-lake/


Mein Lieblingsbild vom Mars: „Verzauberte“ Felsen am Jezero-Krater

Verzauberter Blick auf Jezero Rocks
Verzauberte Ansicht der Jezero-Felsen: Dieses Bild der Sedimentgesteine ​​des „Verzauberten Sees“ wurde am 30. April 2022, dem 424 Sol, der Mission. Bildnachweis: NASA/JPL-Caltech. Bild herunterladen >

Nicht einmal Obi-Wan Kenobi konnte Katie Stack Morgan von Perseverance davon überzeugen, dass dies nicht die Felsen sind, nach denen sie sucht.


Fragen Sie einen beliebigen Weltraumforscher, und er wird ein oder zwei Lieblingsfotos von seiner Mission haben. Für Katie Stack Morgan, die stellvertretende Projektwissenschaftlerin für den Marsrover Perseverance der NASA, hat die erste Nahaufnahme von geschichteten Felsen am Fuß des alten Flussdeltas des Jezero-Kraters einen besonderen Platz in ihrem Herzen. Das Bild des Felsvorsprungs „Enchanted Lake“, der informell nach einem Wahrzeichen in Alaskas Katmai National Park and Preserve benannt ist, wurde am 30. April 2022 von einer der Gefahrenvermeidungskameras (Hazcams) des Rovers aufgenommen.

Eine massive fächerförmige Ansammlung von Gesteinen und Sedimenten am westlichen Rand des Jezero-Kraters, das Delta, das sich vor Milliarden von Jahren am Zusammenfluss eines Marsflusses und eines Kratersees gebildet hat. Die Erkundung dieses Deltas stand auf der Wunschliste von Stack Morgan und dem Rest des Perseverance-Wissenschaftsteams, weil sie glauben, dass der Ort eine der besten Gelegenheiten für die Mission bietet, Gesteine ​​zu finden, die Reste des alten mikrobiellen Lebens bewahrt haben könnten – ein Hauptziel der Mission.

„Hazcam-Bilder werden hauptsächlich von den Ingenieuren der Mission verwendet, um beim Fahren und Platzieren des Arms des Rovers zu helfen“, sagte Stack Morgan. „Aber als ich das Hazcam-Bild von Enchanted Lake sah, war es Liebe auf den ersten Blick. Dieses Bild bot unseren ersten Blick auf Sedimentgesteine ​​aus nächster Nähe – diejenigen, die ich am gespanntesten erkunden wollte, seit Jezero vor fast vier Jahren zum Landeplatz für Perseverance ernannt wurde.“

Felsen und Zeichen des vergangenen Lebens

Um am besten zu verstehen, warum dieses Bild von Perseverances erster enger Begegnung mit einem Sedimentgestein so ein Kick für Stack Morgan ist, hilft es, zu den Anfängen der Erforschung des Mars durch den Rover zurückzublicken. Nachdem Perseverance am 18. Februar 2021 auf den flachen, felsigen Ebenen gelandet war, die den Boden des Jezero-Kraters bilden, verbrachte es mehr als ein Jahr damit, Aufschlüsse, Felsbrocken und Regolith (gebrochenes Gestein und Staub) in der Gegend zu untersuchen und Proben zu sammeln der Weg.

Eine der großen Erkenntnisse des Wissenschaftsteams aus dieser Anstrengung: Die Felsen des Kraterbodens sind magmatischen Ursprungs und haben sich vor Milliarden von Jahren aus geschmolzenem Gestein gebildet, das entweder unter der Erde oder nach Vulkanausbrüchen abgekühlt ist. Eruptivgesteine ​​können viele Informationen über das Innere des Mars und das Alter geologischer Merkmale liefern. Darüber hinaus fand das Team Beweise dafür, dass die Eruptivgesteine ​​mit Wasser interagierten und einst bewohnbare Mikroumgebungen beherbergt haben könnten .

Aber, wie Stack Morgan feststellt, bieten die brüllend heißen Dampfkochtopf-Bedingungen, die magmatisches Gestein produzieren, normalerweise nicht die optimale Umgebung, um Beweise für versteinertes mikroskopisches Leben zu erhalten. Andererseits bieten Sedimentgesteine ​​– wie jene, die das Jezero-Delta dominieren – einen idealen Ort, um nach Zeichen des vergangenen Lebens zu suchen.

Im Laufe der Zeit wurden Schlamm, Schlick und Sand, die in den See gebracht wurden, der Jezero füllte, komprimiert und zu dünnen Sedimentgesteinsschichten verfestigt. Wenn während der Sedimentgesteinsbildung auch mikroskopisch kleine Organismen vorhanden waren, könnten sie in den Schichten eingefangen und in der Zeit als versteinerte Lebensformen eingefroren worden sein.

Könnten die geschichteten Felsen des Enchanted Lake Beweise dafür enthalten, dass der Mars einst die Heimat von mikroskopischem Leben war? Vielleicht. Eine solch monumentale Bestimmung muss jedoch wahrscheinlich warten, bis die Proben, die Perseverance in speziellen Röhrchen sammelt, zur Erde gebracht und mit leistungsstarken Laborgeräten analysiert werden, die zu groß sind, um sie zum Mars zu bringen. Und während die geplante Mars Sample Return Campaign der NASA etwa 30 Röhrchen zur Erde zurückbringen soll, muss die NASA wählerisch sein, was in sie hineinkommt.

„Enchanted Lake war unsere erste enge Begegnung mit Sedimentgestein in Jezero, aber wir werden das tun, was Rover-Missionen am besten können – sich umsehen, fahren und dann noch ein bisschen mehr schauen. Selbst wenn wir andere Ziele im Delta zum Proben finden, werde ich immer einen besonderen Platz in meinem Herzen für die Felsen haben, die mir gezeigt haben, dass wir den Rover an die richtige Stelle geschickt haben“, sagte Stack Morgan.

Perseverance parkt etwa auf halber Höhe des Deltas in einem Feld aus Sedimentgestein, das das Wissenschaftsteam „Hogwallow Flats“ nennt. In den nächsten Wochen wird der Rover einen oder mehrere Felsen in der Gegend analysieren – und vielleicht auch Proben nehmen. Dann wird das Team entscheiden, ob es zum Enchanted Lake zurückkehren oder andere aufregende Aufschlüsse des Jezero-Deltas erkunden möchte.

Quelle: https://mars.nasa.gov/news/9217/my-favorite-martian-image-enchanted-rocks-at-jezero-crater/

ExoMars-Rover: Zusammenarbeit mit Russland offiziell beendet/Neue Erkenntnisse über das weitere Vorgehen werden am 20. Juli bei einem Medienbriefing bekannt gegeben

Am 12. Juli gab der Generaldirektor der ESA, Josef Aschbacher, bekannt , dass der Rat der Europäischen Weltraumorganisation offiziell beschlossen hat, die Zusammenarbeit mit Russland für die ExoMars -Mission einzustellen .

Die Zusammenarbeit mit Russland war bereits im März während des Treffens des ESA-Rates ausgesetzt worden, bei dem die Auswirkungen des Krieges in der Ukraine auf die Programme der Agentur bewertet wurden. 

„Die Umstände, die zur Einstellung der Zusammenarbeit mit Roskosmos geführt haben – erklärte  Aschbacher  – der Krieg in der Ukraine und die daraus resultierenden Sanktionen bestehen fort.“

Unmittelbar nach dem Rat im März prüfte die ESA umgehend die verschiedenen verfügbaren Optionen für die Fortsetzung der Mission, deren Ziel die Suche nach gegenwärtigem oder vergangenem Leben auf dem Roten Planeten ist. Die Vereinbarung sah vor, dass Russland den Proton-Träger für den Start vom Kosmodrom Baikonur in Kasachstan, dem Landeplatz Kazachok für den Rover Rosalind Franklin und andere Bordinstrumente bereitstellen müsste. Zu den bisher in Betracht gezogenen Möglichkeiten gehören die Zusammenarbeit mit der NASA oder Initiativen auf europäischer Ebene.

In diesem Zusammenhang hat die ESA am 20. Juli auf der Farnborough International Airshow ein Briefing über die Zukunft der Erforschung des Mars organisiert . An dem Treffen werden auch die NASA und die britische Weltraumbehörde teilnehmen.

Nach der Ankündigung der ESA erklärte Roscomos‘ Nummer eins, Dmitry Rogozin , dass Russland um die Rückgabe der Kazachok-Plattform bitten wird, die bereits für die letzten Vorbereitungen des Starts nach Europa transportiert worden war. Rogosin erklärte auch, dass die russischen Kosmonauten auf der ISS den vor etwa einem Jahr gestarteten und sich noch in der Inbetriebnahmephase befindenden europäischen Arm Era (European Robotic Arm) des Nauka-Moduls nicht mehr verwenden werden. 

Auf der anderen Seite des Ozeans wiederholte der NASA-Administrator Bill Nelson , dass die Beziehungen auf der Raumstation zwischen Europäern, Amerikanern und Russen sehr professionell fortgeführt werden und dass die ISS das Ergebnis einer internationalen Anstrengung für Wissenschaft, Technologie und Forschung   ist und weitergeführt werden muss .

Nelson fügte hinzu, dass die Verhandlungen zwischen der NASA und Roscosmos über Flüge mit gemischter Besatzung bei Sojus- und  Crew-Dragon -Missionen weitergehen . Die Vereinbarungen hätten in diesem Frühjahr fertig sein sollen, aber es gibt noch kein sicheres Datum für die Unterzeichnung. 

Bildnachweis: Esa

Quelle: https://www.globalscience.it/37038/exomars-termina-ufficialmente-la-cooperazione-con-la-russia/


In anderer Hinsicht sprach der Rat heute @ESA
die ExoMars-Rover- und Oberflächenplattform-Mission und erkannte an, dass die Umstände, die zur Aussetzung der Zusammenarbeit mit Roskosmos geführt haben – der Krieg in der Ukraine und die daraus resultierenden Sanktionen – weiterhin bestehen.

Infolgedessen hat mich der Rat beauftragt, die derzeit ausgesetzte Zusammenarbeit mit Roscosmos bei der Mission ExoMars Rover und Lande-Platform offiziell zu beenden.

Neue Erkenntnisse über das weitere Vorgehen mit anderen Partnern werden am 20. Juli bei einem Medienbriefing bekannt gegeben, Einzelheiten folgen.

Russland bedroht europäischen Roboterarm der ISS nach ExoMars-Abbruch

Der ExoMars-Rover Rosalind Franklin.
Die ESA sagte, sie habe die seit März ausgesetzte Zusammenarbeit mit Russland bei ExoMars offiziell beendet und werde mit „neuen Partnern“ bei der Mission zusammenarbeiten. Bildnachweis: ESA

WASHINGTON – Die Europäische Weltraumorganisation hat die Zusammenarbeit mit Russland bei der ExoMars-Mission offiziell beendet, was zu einer russischen Drohung führte, den Einsatz eines europäischen Roboterarms auf der Internationalen Raumstation einzustellen.

ESA-Generaldirektor Josef Aschbacher gab am 12. Juli bekannt, dass der ESA-Rat offiziell beschlossen habe, die Zusammenarbeit auf ExoMars zu beenden, wo Russland einen europäischen Rover namens Rosalind Franklin zur Marsoberfläche gebracht hätte. Diese Zusammenarbeit liegt seit März auf Eis .

Während die ESA die Zusammenarbeit bisher nur ausgesetzt hatte, schien es höchst unwahrscheinlich, dass die Zusammenarbeit mit Russland jemals wieder aufgenommen würde. Aschbacher sagte, die Entscheidung sei gefallen, weil „die Umstände, die zur Einstellung der Zusammenarbeit mit Roskosmos geführt haben – der Krieg in der Ukraine und die daraus resultierenden Sanktionen – fortbestehen“.

Seit der Entscheidung der ESA, die Arbeit mit Russland an ExoMars auszusetzen, prüft sie, wie die Beiträge Russlands ersetzt werden können. Dazu gehörte nicht nur der Protonenstart des Raumfahrzeugs, sondern auch die Kazachok-Landeplattform und einige Instrumente und Radioisotopen-Heizeinheiten auf dem Rover. Möglich sind Kooperationen mit der NASA sowie komplett europäische Alternativen.

Aschbacher sagte, dass die ESA bei einem Medienbriefing am 20. Juli „neue Einblicke in die Zukunft mit anderen Partnern“ geben werde, Einzelheiten folgen. Eine Medienmitteilung der ESA vom 13. Juli, die ihre Präsenz auf der bevorstehenden Farnborough International Airshow skizzierte, sagte, dass es am 20. Juli in London ein Briefing „über die Zukunft der Marserkundung“ geben werde, an dem ESA, NASA und die britische Weltraumbehörde teilnehmen würden.

Während die Entscheidung der ESA, die Zusammenarbeit mit Russland auf ExoMars offiziell zu beenden, nicht überraschend war, löste sie eine scharfe Reaktion von Dmitry Rogosin, dem Leiter von Roscosmos, aus. In einem Post auf dem Social-Media-Netzwerk Telegram kurz nach der ESA-Ankündigung warf Rogozin Aschbacher vor, die gemeinsame ExoMars-Mission „sabotiert“ zu haben. Er sagte, Roscosmos werde die Rückgabe der Kazachok-Plattform anstreben, die sich in Europa für Startvorbereitungen befand, als die ESA die Zusammenarbeit bei der Mission einstellte.

Rogosin sagte auch, er habe den russischen Kosmonauten auf der Station befohlen, dort keinen europäischen Roboterarm mehr einzusetzen. Dieser Arm ist Teil des Nauka-Moduls, das vor einem Jahr gestartet wurde und immer noch in Betrieb ist.

Es war nicht sofort klar, ob dieser Befehl ausgeführt werden würde und wenn ja, welche Auswirkungen er auf den ISS-Betrieb haben würde. Es war auch unklar, ob dies einen für den 21. Juli geplanten Weltraumspaziergang des Roskosmos-Kosmonauten Oleg Artemyev und der ESA-Astronautin Samantha Cristoforetti vom russischen Segment der Station verschieben würde. Ein Hauptzweck dieses Weltraumspaziergangs ist die Arbeit an diesem Roboterarm.

Die ISS-Beziehungen zwischen Russland und den westlichen Partnern wurden zunehmend belastet, insbesondere nachdem Roscosmos am 4. Juli Fotos von russischen Kosmonauten veröffentlichte, die Flaggen von zwei von russischen Streitkräften besetzten Regionen der Ukraine halten. Die NASA kritisierte Russland in einer Erklärung vom 7. Juli scharf für diesen Fototermin , eine Ansicht, die von Aschbacher von der ESA geteilt wird.

„Auf der Internationalen Raumstation ist kein Platz für Politik“, sagte NASA-Administrator Bill Nelson gegenüber Reportern nach einer Veranstaltung am 12. Juli im Goddard Space Flight Center anlässlich der Veröffentlichung von Beobachtungen des James-Webb-Weltraumteleskops.

Er wiederholte jedoch, dass eine „sehr professionelle Beziehung“ zwischen der ISS-Besatzung sowie zwischen den Missionskontrollzentren in Houston und Moskau fortbesteht, und glaubte, dass alle Partner, einschließlich Russland, bis zum Ende des Jahrzehnts beteiligt bleiben würden. „Dies ist ein internationales Wissenschafts-, Technologie- und Forschungsvorhaben, das fortgesetzt werden wird.“

Nelson fügte hinzu, dass die Verhandlungen zwischen der NASA und Roscosmos über ein Sitztauschabkommen fortgesetzt werden, um es russischen Kosmonauten zu ermöglichen, in kommerziellen Besatzungsfahrzeugen zu fliegen, im Austausch für amerikanische Astronauten, die auf Sojus-Raumschiffen fliegen. Die ISS-Manager der NASA sagten im Frühjahr, dass bis Juni ein Deal abgeschlossen werden müsse, um den Austausch der Besatzung für Missionen zu ermöglichen, die im September starten.

„Das Drop-Dead-Datum ist noch nicht abgelaufen“, sagte er, gab aber nicht an, wann ein Geschäft abgeschlossen werden musste.

Quelle: https://spacenews.com/russia-threatens-iss-european-robotic-arm-after-exomars-termination/

Perseverance: Campaign #2: The Delta Front

Written by Denise Buckner, Student Collaborator at University of Florida

Perseverance looks towards the Delta on Sol 419, capturing this image with its Right Navigation Camera Credits: NASA/JPL-Caltech. Download image ›

This week on Mars, Perseverance officially began the “Delta Front Campaign.” This second campaign of the mission commenced on April 18th, 2022, the 415th sol since landing. Each campaign represents a sub-portion of the Mars 2020 mission and is dedicated to exploring a distinct region, drilling designated sets of cores for possible future return to Earth, and taking numerous in situ science observations with onboard instruments to study the environmental and geologic features that characterize that region.

Ripples and ridges at the delta’s edge. Excited to start science activities at this destination we’ve had in our sights for so long. The finely layered rocks just ahead may be my next target for #SamplingMars.

During the Crater Floor Campaign, Perseverance spent over 400 sols roving across the floor of Jezero crater, starting at the Octavia E. Butler landing site, driving south to explore the best exposures of the crater floor rocks, then turning back to the north around Séítah, and approaching the edge of the delta. During this traverse, Perseverance drilled and collected 8 rock cores, one atmospheric sample, and sealed one witness tube. The rover characterized igneous lithologies (or rock types) that make up the crater floor, studied Martian atmospheric phenomenon and dust cycling, supported the Ingenuity helicopter’s 27 flights (thus far!) and so much more. Perseverance also used cameras and remote sensing instruments to start observing the delta from afar in preparation for the Delta Front Campaign. Here you can view an interactive map showing everywhere Perseverance has explored to date!

The Delta Front Campaign will take about half of an Earth year: Perseverance will rove 130 feet (40 meters) up and over the delta, drill cores along the way, and characterize the layered sedimentary rocks that make up the delta. These sediments were deposited billions of years ago, when water flowed across the surface of Mars and a river drained into the ancient crater below. If Mars did host life during this time, remnants or signatures of those organisms could be preserved in some of these ancient rocks. By characterizing the delta’s structure, mineralogy, and organic chemistry, scientists hope to better understand Jezero’s past environment and select cores that could be astrobiologically interesting for return to Earth!

Perseverance will spend the first few sols of the Delta Front Campaign traversing across an area called Cannery Passage, which is the transitional region between the edge of the crater floor and the delta. Next, the science team will have a big decision to make- which direction will Perseverance take to get up the delta? Over the past few months, the science team’s Campaign Planning Science Group worked to map out potential paths and decided on two options: Cape Nukshak and Hawksbill Gap. Once Perseverance is closer to this divergence point, images and other data gathered by rover instruments will give the scientists and engineers a better idea of which area may be more interesting and provide better opportunities to conduct scientific measurements. After selecting a path, Perseverance will rove up the delta layers, stopping to analyze the sediments and gather cores along the way. When the climb is complete, the Delta Front Campaign will conclude and Perseverance will begin campaign #3: the Delta Top.

Quelle: https://mars.nasa.gov/mars2020/mission/status/377/campaign-2-the-delta-front/

NASA’s Perseverance Rover Arrives at Delta for New Science Campaign – NASA Mars Exploration

After collecting eight rock-core samples from its first science campaign and completing a record-breaking, 31-Martian-day (or sol) dash across about 3 miles (5 kilometers) of Mars, NASA’s Perseverance rover arrived at the doorstep of Jezero Crater’s ancient river delta April 13. Dubbed “Three Forks” by the Perseverance team (a reference to the spot where three route options to the delta merge), the location serves as the staging area for the rover’s second science expedition, the “Delta Front Campaign.”

“The delta at Jezero Crater promises to be a veritable geologic feast and one of the best locations on Mars to look for signs of past microscopic life,” said Thomas Zurbuchen, the associate administrator of NASA’s Science Mission Directorate in Washington. “The answers are out there – and Team Perseverance is ready to find them.”

Perseverance Views Its Parachute: This image of the parachute that helped deliver NASA’s Perseverance Mars rover to the Martian surface was taken by the rover’s Mastcam-Z instrument on April 6, 2022, the 401st Martian day, or sol, of the mission. Credits: NASA/JPL-Caltech/ASU/MSSS. Download image ›

The delta, a massive fan-shaped collection of rocks and sediment at the western edge of Jezero Crater, formed at the convergence of a Martian river and a crater lake billions of years ago. Its exploration tops the Perseverance science team’s wish list because all the fine-grained sediment deposited at its base long ago is the mission’s best bet for finding the preserved remnants of ancient microbial life.

Using a drill on the end of its robotic arm and a complex sample collection system, Perseverance is gathering rock cores for return to Earth – the first part of the Mars Sample Return campaign.

“We’ve been eyeing the delta from a distance for more than a year while we explored the crater floor,” said Ken Farley, Perseverance project scientist at Caltech in Pasadena. “At the end of our fast traverse, we are finally able to get close to it, obtaining images of ever-greater detail revealing where we can best explore these important rocks.”

Sticking a Fork in Three Forks

The Delta Front Campaign kicked off Monday, April 18, with about a week’s worth of driving to the southwest and then west. One goal of this excursion is to scope out the best route to ascend the delta, which rises about 130 feet (40 meters) above the crater floor. Two options, called “Cape Nukshak” and “Hawksbill Gap,” look traversable. The science team is leaning toward Hawksbill Gap because of the shorter drive time needed to reach the top of the delta, but that may change as the rover acquires additional information on the two options.

Whichever route Perseverance takes to the plateau atop the delta, the team will perform detailed science investigations, including taking rock core samples, on the way up, then turn around and do the same thing on the way back down. The rover is expected to collect around eight samples over about half an Earth year during the Delta Front Campaign.

After completing the descent, Perseverance will, according to current plans, again ascend the delta (perhaps via the other, untraveled route) to begin the “Delta Top Campaign,” which will last about half an Earth year as well.

“The delta is why Perseverance was sent to Jezero Crater: It has so many interesting features,” said Farley. “We will look for signs of ancient life in the rocks at the base of the delta, rocks that we think were once mud on the bottom of ‘Lake Jezero.’ Higher up the delta, we can look at sand and rock fragments that came from upstream, perhaps from miles away. These are locations the rover will never visit. We can take advantage of an ancient Martian river that brought the planet’s geological secrets to us.”

More About Perseverance

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

Quelle: https://newsasia.co/nasas-perseverance-rover-arrives-at-delta-for-new-science-campaign-nasa-mars-exploration/

Perseverance at the Delta

NASA's Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover's mast.
Mars Perseverance Sol 388 – Right Mastcam-Z Camera: NASA’s Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was acquired on March 24, 2022 (Sol 388) at the local mean solar time of 08:08:28. Credits: NASA/JPL-Caltech/ASU. Download image ›

Last week’s blog talked about the rapid traverse of Perseverance to the Delta. This weeks blog entry will talk about the Delta itself, and why it is something worth rapidly traversing towards!

My long haul to the ancient river delta is almost done. Up ahead: layered rocks, laid down in water, sure to hold secrets of what their environment was once like. Could they even give hints about past life? Time will tell…

The prospect of the delta for me is that every day will be full of excitement and could bring anything. Let me explain that a bit further. On a space mission like M2020 you get used an exciting timeline of activities, but for a geologist, the excitement of the delta comes from not knowing what is coming next. Every image that is returned by the rover of the delta rocks will be in a very real sense unique.

Let’s explore that line of thinking a bit.

A delta forms when a sediment laden river runs into a body of standing water, and as it does so, slows and can no longer hold the sediment, so it drops the rocks, gravel and soil into the water body, which gently sinks to the bottom and forms a delta. Over time, the delta becomes a layered repository, like an book with pages, which one can turn over each day to learn more about the history of Mars.

How does it achieve this? Well, the rocks and sediments had to come from somewhere. They were sourced in a region called the “watershed” of the delta. This is a much bigger area than Jezero crater (itself about 45km across), and the rocks we see in the delta will inform us about a wide range of Martian process, and some rocks may even be *older* than the Jezero crater itself (about 3.9 billion years old).

This might happen, for example, if a very old rock is preserved in the watershed, and then is broken off by water, and then carried by that fluid into the river, and finally into Jezero crater. If we do get access to these super-old rocks, then this would be a very interesting thing for the rover to sample for eventual return to Earth.

I’m sure others will soon make magnificent Kodiak landscapes, but I can’t resist re-posting the same image as above, but in a very sunny mood. Processed MCZ_RIGHT (sunny mood) RMC: 21_2560 Sol: 409 LMST: 10:06:51 Credit: NASA/JPL-Caltech/ASU #PerseveranceRover
Sol 409: Ladies and Gentlemen, the Kodiak! Mosaic of the Kodiak butte taken by the Mastcam-Z of the #PerseveranceRover Credit: NASA/JPL-Caltech/ASU/MSSS/martiandennis

Another mind bending possibility is that we may find fossilized traces of ancient Martian life in these delta rocks. In one scenario, life might have got started in the early Noachian period (about 4 billion years old) when Mars was probably more friendly to life, and was preserved in the watershed until one fateful day when they were washed into the river system, and then the crater.

So these interesting rocks will arrive somewhat randomly to us as we explore the delta, one can appreciate that everyday of the year-long “Delta campaign” will be exciting for every scientist on the team, because every day could be the day we hit it big. Real big.

NASA's Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover's mast.
Mars Perseverance Sol 395 – Right Mastcam-Z Camera: NASA’s Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was acquired on March 31, 2022 (Sol 395) at the local mean solar time of 15:34:50. Credits: NASA/JPL-Caltech/ASU. Download image ›

Quelle: https://mars.nasa.gov/mars2020/mission/status/375/perseverance-at-the-delta/

Perseverance/Ingenuity: Risks in the ‚Séítah‘ Region – Flight 24

This annotated overhead image from the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter (MRO) depicts three options for the agency’s Mars Ingenuity Helicopter to take on flights out of the “Séítah” region, as well as the location of the entry, descent, and landing (EDL) hardware.

Mars Helicopter Route Options out of ‘Séítah‘: This annotated overhead image from the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter (MRO) depicts three options for the agency’s Mars Ingenuity Helicopter to take on flights out of the “Séítah” region, as well as the location of the entry, descent, and landing (EDL) hardware. Credits: NASA/JPL-Caltech/University of Arizona/USGS. Download image ›

Ingenuity continued its journey towards the river delta this weekend with Flight 24. This flight took place Sunday, April 3, and the data arrived back later that evening. The flight was the fourth of five sorties Ingenuity will make to cross the “Séítah” region of Jezero Crater and arrive in the vicinity of its delta. This multiflight shortcut across Séítah is being done to keep ahead of the Perseverance rover – which is currently making great time on a more circuitous route to the same area.

The Ingenuity and Mars 2020 teams have big plans for the helicopter at the delta. But they have to get there first, and prior to Flight 24 a crucial decision had to be made on which of three different flight plans offered the best chance of a successful delta arrival.

The three options on the table were:

  • Option A: a single, long flight.
  • Option B: two shorter flights.
  • Option C: a very short Flight 24 to make the long flight out of Séítah slightly easier than option A.

In deciding which of these options to greenlight, the Mars Helicopter team had to consider multiple factors: thermal, atmospheric conditions, flight time, drift, landing sites, and keeping up with the rover. We’ll explore each of these factors and what role they played in the overall risk assessment and selection of our decision.

Thermal Limitations

For spacecraft, “thermal” refers to the management of the temperatures of each component. Every part of Ingenuity has what is called Allowable Flight Temperatures (AFT), which give a range of temperatures at which each part is safe to operate. Even your phone or computer has a recommended temperature range: Too cold or too hot and it will not work as intended. Keeping “within AFTs” is critical for ensuring the health of Ingenuity, which means we are very careful to manage this –  for example, by using heaters overnight when it is cold, and limiting activities during the day, when it is warmer. A particular challenge for Ingenuity is managing the temperature of its actuators, the servos and motors that allow it to fly (see some of these here). These components generate a lot of heat during flight, to the extent that the maximum flight time is often limited by the maximum AFT of these actuators.

Atmospheric Seasonal Conditions

If you have been following this blog, you will know that we have been operating with reduced air density since September, requiring an increase in rotor rpm from 2,537 to 2,700. Flight 14, for example, was a checkout flight to confirm Ingenuity could fly in these conditions. For all flights since then, Ingenuity has been successfully operating with 2,700 rpm. Unfortunately, though, using a higher rpm causes the actuators to heat more rapidly and reach their AFTs sooner, limiting maximum flight time. Practically, this has limited us to flights of 130 seconds or less. Thankfully, we are toward the end of the Martian summer, with its low air density, and starting to move into the Martian fall, with higher air densities (see below), meaning we can now return to the 2,537 rpm of our first 13 flights. This change in rpm allows an increase in flight time to approximately 150 seconds. However, atmospheric density isn’t the only factor at play: The main driver of the changes in density is the temperature of the atmosphere, which also has a major impact on – you guessed it – the temperature of Ingenuity.

It is warmer now coming out of the summer than with our earlier flights in the spring. So even though we have been flying at 10:00 a.m. local mean solar time (LMST)- on Mars throughout the summer, Ingenuity has been hotter than flights at 12:00 LMST in the spring. A warmer atmosphere means warmer components, meaning we reach maximum AFTs sooner. This means, flying at 10:00 LMST, we still can’t fly for as long as we did previously, such as during Flights 9, 10, and 12.

Models for the seasonal variation in atmospheric density on Mars between summer (low density) and winter (higher density) predict that air density will be high enough in late March for NASA's Mars Ingenuity Helicopter to return to its original RPM.
Mars Atmosphere Density Model: Models for the seasonal variation in atmospheric density on Mars between summer (low density) and winter (higher density) predict that air density will be high enough in late March for NASA’s Mars Ingenuity Helicopter to return to its original RPM. Credits: NASA/JPL-Caltech. Download image ›

Flight Time and Distance

With the current atmospheric conditions at Jezero Crater, the AFTs of the actuators are the limiting factor for the total flight time. Let’s take a more detailed look at the different options for Flight 24 and beyond:

  • Option A: The long flight out of the delta requires 170 seconds of flight, the maximum of our previous flights. This is not possible until the atmosphere cools down further.
  • Option B: The two shorter flights are operating the same as our previous “summer” flights: 130 seconds of flight time. This flight time is possible without any changes.
  • Option C: The first flight, a short hop, is designed to reduce the flight time needed for the second flight to 160 seconds. This is possible if we: i) reduce the rpm to 2,537, and ii) fly earlier in the sol to have lower atmospheric temperatures.

The team determined that by flying 30 minutes earlier, at 09:30 LMST, the flight time could be increased by 10 seconds. However, Ingenuity had never flown at 09:30 LMST before, so this would be a new “first.” And flying earlier brings with it associated risks with the charge state of the helicopter’s batteries: Ingenuity uses power to heat itself overnight and recharges its batteries with its solar panel, meaning the batteries have less charge in the morning. If we choose to fly at 9:30, we would first have to test it out – waking Ingenuity at this time without flying, to check that it would have sufficient charge for a flight.

In summary, the different maximum flight time options available are:

  • 130 seconds (baseline)
  • 150 seconds (decreased rpm)
  • 160 seconds (decreased rpm and earlier flight time)

Flight time is normally equivalent to distance traveled, but it also depends on the maneuvers being performed. For example, rotating in place (called “yawing”), is done (at least at Mars) slowly, taking a handful of seconds with no distance traveled. For that reason, Mars Helicopter flights with more yaw maneuvers don’t travel as far in the same flight time.

All these factors come into play with option C – the short hop. This flight would enable the longer 160 second flight, for several reasons: 1) it is a check-out test for flying back at 2,537 rpm, 2) it is a test for flying at 09:30 LMST, and 3) it reduces the flight time for the subsequent flight by doing the time-consuming yaw maneuvers and moving slightly closer to the target for the second flight. All three of these steps are required to enable a 160-second flight out of the Séítah.

Drift

As discussed in previous blog posts, Ingenuity was a tech demo expecting to fly over flat ground. When flying over “non-flat” terrain such as hills, cliffs, large boulders and large dunes, Ingenuity’s estimate of its position and heading can drift. This drift leads to a wider area where it may land, called the landing ellipse. The farther it flies, the larger the potential drift, and the larger the landing ellipse. The Séítah region has many of these non-flat features (see the dunes and rocks in the image at the top, or on the interactive map), making it riskier for Ingenuity to fly over this region. An additional challenge with the upcoming flights is the presence of hardware from Perseverance’s entry, descent, and landing (EDL), including the sky crane, parachutes and backshell. The green dots (in figure 1) show the predicted locations of this hardware from orbital imagery. Some of these components are under the flight path of option B, which presents a potential for unexpected performance from Ingenuity’s laser altimeter (a laser that measures the helicopter’s height above the surface) and visual odometry system, which could cause more drift.

Landing Sites

Each flight of Ingenuity has a planned landing ellipse (or sometimes just a landing region) that has been analyzed to be safe to touch down on, and to be large enough for the expected drift. The challenge is finding a large enough landing area that is free of hazards, such as rocks, large slopes, or even EDL hardware. Finding large landing sites is challenging in Séítah, so shorter flights are preferred, to reduce the potential drift, and hence reduce the required size of the landing ellipse. Outside of Séítah, the terrain is relatively flat and helicopter-friendly, allowing for large landing ellipses and long flights with greater drift. Let’s look at the different options and their landing sites:

  • Option A: one landing ellipse outside of the Séítah that is large and safe.
  • Option B: The landing ellipse for Flight 24 is within the Séítah, limiting its size, and requires a medium-distance flight, given less margin and making it slightly riskier than landing outside the Séítah.
  • Option C: The first landing site (for Flight 24) requires only a short flight, reducing the amount of potential drift, and it remains within the relatively large landing ellipse of the previous flight, 23.

Keeping up With the Rover

Perseverance is making great progress on its drive to the river delta, and it is important that Ingenuity keeps pace to arrive at the delta before the rover does. This is for two reasons: telecommunications and safety. Ingenuity only communicates with the helicopter base station on Perseverance, so it needs to stay close enough to have a good connection. For safety, it is ideal if Ingenuity flies ahead of Perseverance to avoid ever having to fly past or near the rover, to minimize the risk of any close contact in a worst-case scenario.

Balancing Risks

Let’s review each of the factors above to see which option gives the best set of trade-offs to balance risk:

Factors
OptionRPMTime of SolDrift / Landing SiteKeeping With Rover
A2,537 (change)N/A. Too hotNo landing in SéítahHave to wait
B2,70010:00 (no change)Medium flight in Séítah;

EDL hardware risk
On pace
C2,537 (change)09:30 (new!)A short flight in SéítahOn pace

Which option would you choose?

As is often the case in Ingenuity operations, there is no obvious solution that is the best for all factors: Trade-offs have to be made based on the available data and the judgment of team members. In this case, the helicopter team decided to go with option C.

Flight 24 Summary

With option C, flight 24 was a short hop and yaw at 09:30 LMST with 2,537 rpm, and set us up to exit Séítah on flight 25.

Flight #: 24
Goals: Test flight at 2,537 rpm, 09:30 LMST flight
Altitude: 10 meters
Time aloft: 69.5 seconds
Distance: 47 meters

With Flight 24 in our log book, it is now time to look forward to our upcoming effort that charts a course out of Séítah.  Flight 25 – which was uplinked yesterday – will send Ingenuity 704 meters to the northwest (almost 80 meters longer than the current record – Flight 9). The helicopter’s ground speed will be about 5.5 meters per second (another record) and we expect to be in the rarefied Martian air for about 161.5 seconds. 

See you at the delta!

Quelle: https://mars.nasa.gov/technology/helicopter/status/373/balancing-risks-in-the-seitah-region-flight-24/