Assembly of Mars rover’s rocket to begin this week

-Das Stapeln der Atlas 5-Rakete – Hecknummer AV-088 – soll am 28. Mai mit dem Heben der Vertikalen der ersten Stufe auf der mobilen Startplattform von Atlas innerhalb des VIF beginnen, so Omar Baez, Startdirektor der NASA für die Ausdauer Rover Mission.

-ULA wird die vier Booster des Atlas 5 mit festem Brennstoff installieren, nachdem die erste Stufe im vertikalen Hangar der Rakete angehoben wurde.

-Die Centaur-Oberstufe des Atlas 5, die den Rover auf einer Fluchtbahn von der Erde weg treiben wird, wird um den 4. Juni auf der Rakete gestapelt, sagte Baez.

-ULA wird die Atlas 5-Rakete am 17. Juni für einen Betankungstest auf Pad 41 ausrollen. ULA führt solche Betankungsdemonstrationen vor dem Start mit begrenzten Startfenstern für Planeten durch, um sicherzustellen, dass Teams Probleme mit der Rakete vor dem Starttag erkennen und lösen können.

-„Nachdem wir damit fertig sind, werden wir das Rover-Raumschiff am 22. Juni mit dem Atlas-Zentauren verbinden, einen Test zwischen ihm und der Rakete durchführen, und das wird uns so ziemlich auf unsere endgültigen Überprüfungen und die Installation von vorbereiten die RTG, die eine Generalprobe durchführt und unsere Überprüfung der Startbereitschaft aus dem Weg räumt “, sagte Baez in einem Interview mit Spaceflight Now.

Wrapped up for shipment, the first stage of the Atlas 5 rocket that will launch NASA’s Perseverance rover arrived at Cape Canaveral one May 18 aboard a Ukrainian-built Antonov An-124 cargo plane. Credit: NASA/Kim Shiflett

Two key pieces of hardware needed for NASA’s next Mars rover — an Atlas rocket booster and sterile components of the rover’s sample collection system — recently arrived at Cape Canaveral ahead of the mission’s scheduled launch July 17.

The first stage of United Launch Alliance’s Atlas 5 rocket arrived at Cape Canaveral Air Force Station’s Skid Strip runway May 18 aboard a Ukrainian-built Antonov An-124 transport plane. The cargo aircraft carried the 107-f0ot-long (32-meter) Atlas first stage from Huntsville, Alabama, near ULA’s rocket factory in Decatur.

After unloading the booster from the cargo jet, ULA moved the rocket into the Atlas Spaceflight Operations Center for post-shipment checks.

ULA typically delivers rocket hardware launch sites using the company’s ocean-going vessel named “RocketShip.” But the vessel recently ferried there Delta 4 rocket cores to Vandenberg Air Force Base in California, and was not available for the Atlas 5 shipment to Florida.

Rocket and rover preparations for the July launch are continuing with safeguards to mitigate impacts from the coronavirus pandemic.

Omar Baez, NASA’s launch director for the Perseverance mission, said the rocket’s arrival at Cape Canaveral and the successful launch of the previous Atlas 5 flight May 17 “should set us up with plenty of time for hitting the beginning of the (rover) launch window July 17.”

“Things are progressing as well as they can,” Baez said.

Liftoff is scheduled at 9:10 a.m. EDT (1310 GMT) on July 17, within a broader window extending from 9:00-10:40 a.m. EDT (1300-1440 GMT), according to Baez.

“We’re really looking forward to this one,” he said. “Things evolve from day-to-day. We learn from every mission as far as things that we have to do to protect ourselves and to prevent the team from getting sick.

“We’re definitely are encouraging people, unless they have a significant primary role, not to travel for the testing or the launch,” Baez said. “That work is progressing as best we can. Obviously, there’s a lot of teleworking, but when we do have to have the hands-on work, we try to do it in as safe of a manner as possible.”

Hardware for the Perseverance rover landed at the Kennedy Space Center’s Launch and Landing Facility on May 11 on a NASA C-130 transport plane. The delivery included the mission’s sample tubes, cigar-sized metal cylinders that will store rock samples collected by the Perseverance rover for retrieval and return to Earth by subsequent robotic missions.

The two hardware arrivals signaled the start of a new phase of launch preparations for the Perseverance rover, the centerpiece of NASA’s $2.5 billion Mars 2020 mission.

The 43 sampling tubes are part of the rover’s sample handling system, consisting of a robotic arm, motors, seals and a rotating array of nine drill bits for abrading, regolith collection, and coring of Martian rocks. The specimens drilled from rocks will be stored into the metallic tubes, where samples will be hermetically sealed to await arrival of a follow-on robotic mission in the late 2020s, which will return the material to Earth for analysis.

Workers offload the Perseverance rovers’ Adaptive Caching Assembly May 11 from a NASA C-130 cargo plane at Kennedy Space Center’s Launch and Landing Facility. Credit: NASA/Ben Smegelsky

The Perseverance rover is inside the Payload Hazardous Servicing Facility at Kennedy, where ground teams are putting the final touches on the spacecraft before its closed up inside the payload fairing of its Atlas 5 launcher.

With the final pieces of the sampling system now at Kennedy, NASA teams planned to finish installing the mission’s heat shield. Other tasks planned in the next few weeks include fueling of the mission’s cruise stage, which will shepherd the rover during the seven-month journey from Earth to Mars.

The rover — enclosed inside its atmospheric entry capsule — will then be mated with the cruise stage and attached to the Atlas 5’s payload attachment fixture. The entire spacecraft will next be encapsulated inside the Atlas 5’s Swiss-made payload fairing, then transferred to ULA’s Vertical Integration Facility for integration with the launch vehicle.

Stacking of the Atlas 5 rocket — tail number AV-088 — is scheduled to get underway May 28 with the hoisting of the first stage vertical on top of the Atlas mobile launch platform inside the VIF, according to Omar Baez, NASA’s launch director for the Perseverance rover mission.

ULA ground crews transferred the mobile launch platform back inside the VIF from Cape Canaveral’s Complex 41 launch pad last week following liftoff of the previous Atlas 5 flight May 17.

The Atlas 5 for the Perseverance rover mission will fly in the “541” configuration with four strap-on solid rocket boosters and a 17.7-foot-diameter (5.4-meter) diameter payload fairing.

ULA will install the Atlas 5’s four solid-fueled boosters after raising the first stage inside the rocket’s vertical hangar.

The Atlas 5’s Centaur upper stage, which will propel the rover on an escape trajectory away from Earth, will be stacked on top of the rocket around June 4, Baez said.

NASA’s Perseverance rover is seen mounted on its descent stage inside the mission’s atmospheric entry vehicle, which will protect the rover when it plunges into the Martian atmosphere. Credit: NASA/Christian Mangano

ULA will roll the Atlas 5 rocket out to pad 41 on June 17 for a fueling test. ULA performs such fueling demonstrations before launches with limited planetary launch windows to ensure teams can detect and resolve any problems one the rocket before launch day.

The Atlas 5 will return to the VIF after the tanking test.

“After we’re done with that, we’ll mate the rover spacecraft to the Atlas-Centaur on June 22, do a test between it and the rocket, and that’ll set us up pretty much for our final reviews, installation of the RTG, doing a dress rehearsal, and getting our launch readiness review out of the way,” Baez said in an interview with Spaceflight Now.

The Multi-Mission Radioisotope Thermoelectric Generator, or MMRTG, is the rover’s nuclear power source. The device converts heat from the radioactive decay of plutonium into electricity. Provided by the U.S. Department of Energy, the power generator is one of the final items installed on the rover in the final weeks before launch.

The Atlas 5 rocket is the only launch vehicle currently certified by NASA to carry nuclear-powered payloads into space.

The rocket assigned to the Perseverance rover launch has no significant modifications from ULA’s standard Atlas 5 vehicle, Baez said.

But there’s one change to the pyrotechnic system that would be activated to destroy the Atlas 5 if it deviates from its planned course and threatens populated areas. Such an event is highly unlikely, and the Atlas 5 has successfully reached orbit on all 84 of its missions to date.

“If you did have some kind of accident, that’s to prevent the MMRTG from being a danger to the public,” Baez said. “So we try to be very precise in destroying, for example the Centaur (upper stage), in a way that the MMRTG is not in harms way, where it could harm the public. Thats about the only difference between this and a non-nuclear mission.”

Baez said the same type of ordnance system was used on the Atlas 5 rocket that launched the Curiosity Mars rover in 2011. The Perseverance rover is similar in design to Curiosity, but carries a different set of scientific instruments.

The Perseverance rover’s launch window extends from July 17 through Aug. 11. NASA and ULA recently assessed the performance of the Atlas 5 rocket and the final mass of the spacecraft, engineers determined they could add six days to the launch period.

Launch opportunities to Mars only come about once every 26 months, when the positions of the planets make a direct journey possible.

Quelle: https://spaceflightnow.com/2020/05/24/assembly-of-mars-rovers-rocket-to-begin-this-week/

Astrobiology: The Detective Aboard NASA’s Perseverance Rover

This artist's concept depicts NASA's Mars 2020 rover exploring Mars.
SHERLOC on Perseverance’s Robotic ArmSHERLOC, one of the instruments onboard NASA’s Perseverance Mars rover, sits on the end of the rover’s robotic arm. Credits: NASA/JPL-Caltech. Full image and caption ›

An instrument called SHERLOC will, with the help of its partner WATSON, hunt for signs of ancient life by detecting organic molecules and minerals.


Mars is a long way from 221B Baker Street, but one of fiction’s best-known detectives will be represented on the Red Planet after NASA’s Perseverance rover touches down on Feb. 18, 2021. SHERLOC, an instrument on the end of the rover’s robotic arm, will hunt for sand-grain-sized clues in Martian rocks while working in tandem with WATSON, a camera that will take close-up pictures of rock textures. Together, they will study rock surfaces, mapping out the presence of certain minerals and organic molecules, which are the carbon-based building blocks of life on Earth.

SHERLOC was built at NASA’s Jet Propulsion Laboratory in Southern California, which leads the Perseverance mission; WATSON was built at Malin Space Science Systems in San Diego. For the most promising rocks, the Perseverance team will command the rover to take half-inch-wide core samples, store and seal them in metal tubes, and deposit them on the surface of Mars so that a future mission can return them to Earth for more detailed study.

SHERLOC will be working with six other instruments aboard Perseverance to give us a clearer understanding of Mars. It’s even helping the effort to create spacesuits that will hold up in the Martian environment when humans set foot on the Red Planet. Here’s a closer look.

Mars 2020's SHERLOC Instrument
Mars 2020’s SHERLOC Instrument: An engineering model of SHERLOC, one the instruments onboard NASA’s Perseverance Mars rover. Located on the end of the rover’s robotic arm, SHERLOC will help determine which samples to take so that they can be sealed in metal tubes and left on the Martian surface for future return to Earth. Credits: NASA/JPL-Caltech. Full image and caption ›

The Power of Raman

SHERLOC’s full name is a mouthful: Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals. „Raman“ refers to Raman spectroscopy, a scientific technique named after the Indian physicist C.V. Raman, who discovered the light-scattering effect in the 1920s.

„While traveling by ship, he was trying to discover why the color of the sea was blue,“ said Luther Beegle of JPL, SHERLOC’s principal investigator. „He realized if you shine a light beam on a surface, it can change the wavelength of scattered light depending on the materials in that surface. „

This effect is called Raman scattering. Scientists can identify different molecules based on the distinctive spectral „fingerprint“ visible in their emitted light. An ultraviolet laser that is part of SHERLOC will allow the team to classify organics and minerals present in a rock and understand the environment in which the rock formed. Salty water, for example, can result in the formation of different minerals than fresh water. The team will also be looking for astrobiology clues in the form of organic molecules, which among other things, serve as potential biosignatures, demonstrating the presence life in Mars‘ ancient past.

„Life is clumpy,“ Beegle said. „If we see organics clumping together on one part of a rock, it might be a sign that microbes thrived there in the past.“

Nonbiological processes can also form organics, so detecting the compounds isn’t a sure sign that life formed on Mars. But organics are crucial to understanding whether the ancient environment could have supported life.

A Martian Magnifying Glass

Mineral Map Created During a Test of SHERLOC
Mineral Map Created During a Test of SHERLOC: In this test image by SHERLOC, an instrument aboard NASA’s Perseverance rover, each color represents a different mineral detected on a rock’s surface. Credits: NASA/JPL-Caltech. Download image ›

When Beegle and his team spot an interesting rock, they’ll scan a quarter-sized area of it with SHERLOC’s laser to tease out the mineral composition and whether organic compounds are present. Then WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) will take close-up images of the sample. It can snap images of Perseverance, too, just as NASA’s Curiosity rover uses the same camera — called the Mars Hand Lens Imager on that vehicle — for science and for taking selfies.

But combined with SHERLOC, WATSON can do even more: The team can precisely map SHERLOC’s findings over WATSON’s images to help reveal how different mineral layers formed and overlap. They can also combine the mineral maps with data from other instruments — among them, PIXL (Planetary Instrument for X-ray Lithochemistry) on Perseverance’s robotic arm — to see whether a rock could hold signs of fossilized microbial life.

Meteorites and Spacesuits

Any science instrument exposed to the Martian environment for long enough is bound to change, either from the extreme temperature swings or the radiation from the Sun and cosmic rays. Scientists occasionally have to calibrate these instruments, which they do by measuring their readings against calibration targets — essentially, objects with known properties selected in advance for cross-checking purposes. (For instance, a penny serves as one calibration target aboard Curiosity.) Since they know in advance what the readings should be when an instrument is working correctly, scientists can make adjustments accordingly.

About the size of a smartphone, SHERLOC’s calibration target includes 10 objects, including a sample of a Martian meteorite that traveled to Earth and was found in the Oman desert in 1999. Studying how this meteorite fragment changes over the course of the mission will help scientists understand the chemical interactions between the planet’s surface and its atmosphere. SuperCam, another instrument aboard Perseverance, has a piece of Martian meteorite on its calibration target as well.

While scientists are returning fragments of Mars back to the surface of the Red Planet to further their studies, they’re counting on Perserverance to gather dozens of rock and soil samples for future return to Earth. The samples the rover collects will be exhaustively studied, with data taken from the landscape in which they formed, and they’ll include different rock types than the meteorites.

Next to the Martian meteorite are five samples of spacesuit fabric and helmet material developed by NASA’s Johnson Space Center. SHERLOC will take readings of these materials as they change in the Martian landscape over time, giving spacesuit designers a better idea of how they degrade. When the first astronauts step on to Mars, they might have SHERLOC to thank for the suits that keep them safe.

About the Mission

Perseverance is a robotic scientist weighing about 2,260 pounds (1,025 kilograms). The rover’s astrobiology mission will search for signs of past microbial life. It will characterize the planet’s climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet. No matter what day Perseverance launches during its July 17-Aug. 11 launch period, it will land at Mars‘ Jezero Crater on Feb. 18, 2021.

The Mars 2020 Perseverance rover mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through the agency’s Artemis lunar exploration plans.

For more about Perseverance:

mars.nasa.gov/mars2020/

nasa.gov/perseverance

NASA’s Perseverance Rover Mission Getting in Shape for Launch

The Perseverance rover’s astrobiology mission will search for signs of ancient microbial life. It will also characterize the planet’s climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet. The Perseverance rover mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA’s Artemis lunar exploration plans.

Es ist schön den Rover seit der Ankündigung 12.2012 so zu sehen. Das sind die Bilder (sehr wichtiger Meilenstein) auf die ich jahrelang immer besonders warte, ca 7 Jahre Planung und Bau hat es bis hier gedauert. Die Nasa liegt mit Perseverance sehr gut im Zeitplan. Das baldige verstauen der Sonde in der Nutzlastvergleidung, der Zusammenbau der Rakete bzw. stapeln aller Komponente und der Start sind der schönste Abschnitt. Danach tritt wieder eine Wartephase ein (ca. 6 Monate) bis zur Ankunftszeit im Jahre 2021, wo es wieder interessant und spannend wird.

Christian Dauck
Image of the underside of the Mars 2020 rover
Perseverance from Below: The rover’s descent stage was recently stacked atop the rover at Kennedy Space Center, and the two were placed in the back shell that will help protect them on their journey to Mars. Credits: NASA/JPL-Caltech. Full image and caption ›​

Stacking spacecraft components on top of each other is one of the final assembly steps before a mission launches to the Red Planet.


Engineers working on NASA’s Perseverance rover mission at the Kennedy Space Center in Florida have begun the process of placing the Mars-bound rover and other spacecraft components into the configuration they’ll be in as they ride on top of the United Launch Alliance Atlas V rocket. The launch period for the mission opens on July 17 — just 70 days from now.

Called „vehicle stacking,“ the process began on April 23 with the integration of the rover and its rocket-powered descent stage. One of the first steps in the daylong operation was to lift the descent stage onto Perseverance so that engineers could connect the two with flight-separation bolts.

When it’s time for the rover to touch down on Mars, these three bolts will be released by small pyrotechnic charges, and the spacecraft will execute the sky crane maneuver: Nylon cords spool out through what are called bridle exit guides to lower the rover 25 feet (7.6 meters) below the descent stage. Once Perseverance senses it’s on the surface, pyrotechnically-fired blades will sever the cords, and the descent stage flies off. The sky crane maneuver ensures Perseverance will land on the Martian surface free of any other spacecraft components, eliminating the need for a complex deployment procedure.

The cone-shaped back shell for NASA's Perseverance rover
Protecting NASA’s Perseverance Mars Rover: The cone-shaped back shell for NASA’s Perseverance rover mission. Credits: NASA/JPL-Caltech. Full image and caption ›

„Attaching the rover to the descent stage is a major milestone for the team because these are the first spacecraft components to come together for launch, and they will be the last to separate when we reach Mars,“ said David Gruel, the Perseverance rover assembly, test, and launch operations manager at NASA’s Jet Propulsion Laboratory in Southern California, which manages rover operations. „These two assemblies will remain firmly nestled together until they are about 65 feet [20 meters] over the surface of Mars.“

On April 29, the rover and descent stage were attached to the cone-shaped back shell, which contains the parachute and, along with the mission’s heat shield, provides protection for the rover and descent stage during Martian atmospheric entry.

Whether they are working on final assembly of the vehicle at Kennedy Space Center, testing software and subsystems at JPL or (as the majority of the team is doing) teleworking due to coronavirus safety precautions, the Perseverance team remains on track to meet the opening of the rover’s launch period. No matter what day Perseverance launches, it will land at Mars‘ Jezero Crater on Feb. 18, 2021.

Mars 2020's rocket-powered descent stage
Perseverance Rover Gets in Launch Shape: This image of the rocket-powered descent stage sitting on to of NASA’s Perseverance rover was taken in a clean room at Kennedy Space Center on April 29, 2020. Credits: NASA/JPL-Caltech. Full image and caption ›

Nasa: Fortschritte am Mars-Rover Perseverance

Die arbeiten am Mars-Rover gehen gut voran: Namen (von mir und anderen) wurden angebracht, der Marshubrschauber angebracht, sowie der Skycran betankt… Auch bei der Öffenlichkeitsarbeit lässt sich die Nasa nicht lumpen: Mit Bildern und Videos von öffnenden Fallschirmen, der Landung allgemein, abfeuern der Bremsraketen, sowie allen möglichen Geräuschen bei der Landung, wird die Weltöffentlichkeit erstmals neue einblicke sehen und hören können, die es so vorher noch nie gab anstatt einer Computeranimation von der Landung.

Mit der Startphase des Mars 2020 Perseverance Rovers der NASA in 14 Wochen werden die letzten Vorbereitungen für das Raumschiff im Kennedy Space Center in Florida fortgesetzt. In der vergangenen Woche hat das Team für Montage-, Test- und Startvorgänge wichtige Meilensteine ​​erreicht, die Abstiegseinheit – auch als Skycran bekannt – mit Treibstoff befüllt und den Mars-Hubschrauber angebracht……

Mars Helicopter Attached to NASA’s Perseverance Rover

The Mars Helicopter attached to the belly of NASA's Perseverance
Mars Helicopter and Perseverance Rover: The Mars Helicopter, visible in lower center of the image, was attached to the belly of NASA’s Perseverance rover at Kennedy Space Center on April 6, 2020. The helicopter will be deployed onto the Martian surface about two-and-a-half months after Perseverance lands. Credit: NASA/JPL-Caltech. Download image ›

The team also fueled the rover’s sky crane to get ready for this summer’s history-making launch.


With the launch period of NASA’s Mars 2020 Perseverance rover opening in 14 weeks, final preparations of the spacecraft continue at the Kennedy Space Center in Florida. In the past week, the assembly, test and launch operations team completed important milestones, fueling the descent stage — also known as the sky crane — and attaching the Mars Helicopter, which will be the first aircraft in history to attempt power-controlled flight on another planet.

Over the weekend, 884 pounds (401 kilograms) of hydrazine monopropellant were loaded into the descent stage’s four fuel tanks. As the aeroshell containing the descent stage and rover enter the Martian atmosphere on Feb. 18, 2021, the propellant will be pressure-fed through 120 feet (37 meters) of stainless steel and titanium tubing into eight Mars landing engines. The engines‘ job: to slow the spacecraft, which will be traveling at about 180 mph (80 meters per second) when it’s 7,200 feet (2,200 meters) in altitude, to 1.7 mph (0.75 meters per second) by the time it’s about 66 feet (20 meters) above the surface.

Maintaining this rate of descent, the stage will then perform the sky crane maneuver: Nylon cords spool out to lower the rover 25 feet (7.6 meters) below the descent stage; When the spacecraft senses touchdown at Jezero Crater, the connecting cords are severed and the descent stage flies off.

Terrain Relative Navigation
NASA’s Mars 2020 mission will have an autopilot that helps guide it to safer landings on the Red Planet. Credits: NASA/JPL-Caltech. Read more ›

„The last hundred days before any Mars launch is chock-full of significant milestones,“ said David Gruel, the Mars 2020 assembly, test and launch operations manager at JPL. „Fueling the descent stage is a big step. While we will continue to test and evaluate its performance as we move forward with launch preparations, it is now ready to fulfill its mission of placing Perseverance on the surface on Mars.“

The Helicopter

After the descent stage fueling, the system that will deliver the Mars Helicopter to the surface of the Red Planet was integrated with Perseverance. The helicopter, which weighs 4 pounds (1.8 kilograms) and features propellers 4 feet (1.2 meters) in diameter, is cocooned within the delivery system. In one of the first steps in the day-long process on April 6, technicians and engineers made 34 electrical connections between the rover, the helicopter and its delivery system on the rover’s belly. After confirming data and commands could be sent and received, they attached the delivery system to the rover.

Finally, the team confirmed the helicopter could receive an electrical charge from the rover. Before being deployed onto the surface of Jezero Crater, the Mars Helicopter will rely on the rover for power. Afterward, it will generate its own electrical power through a solar panel located above its twin counter-rotating propellers.

The Mars Helicopter attached to the Perseverance rover.
Mars Helicopter Aboard Perseverance: The Mars Helicopter and its Mars Helicopter Delivery System were attached to the Perseverance Mars rover at Kennedy Space Center on April 6, 2020. The helicopter will be deployed about two-and-a-half months after Perseverance lands. Credits: NASA/JPL-Caltech. Download image ›

The helicopter will remain encapsulated on the rover’s belly for the next year and will be deployed around the beginning of May — roughly two-and-a-half months after Perseverance’s landing. Once the rover drives about 330 feet (100 meters) away and the helicopter undergoes an extensive systems check, it will execute a flight-test campaign for up to 30 days.

The Perseverance rover is a robotic scientist weighing 2,260 pounds (1,025 kilograms). It will search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth and pave the way for human exploration of the Red Planet. No matter what day Perseverance launches during its July 17-Aug. 5 launch period, it will land on Mars‘ Jezero Crater on Feb. 18, 2021.

The Mars 2020 Perseverance rover mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA’s Artemis lunar exploration plans.

For more information about the mission, go to:

https://mars.nasa.gov/mars2020/

For more about NASA’s Moon to Mars plans, visit:

https://www.nasa.gov/topics/moon-to-mars

Entry, Descent, and Landing Technologies

Mars 2020 verfügt über eine Reihe von Kameras, mit denen Ingenieure verstehen können, was während eines der riskantesten Teile der Mission geschieht: Einfahrt, Abstieg und Landung. Der Perseverance Rover basiert stark auf dem erfolgreichen Missionsdesign von Curiosity, aber Mars 2020 erweitert das Design des Raumfahrzeugs um mehrere Abstiegskameras.

Die Kamerasuite umfasst: Fallschirm-Up-Look-Kameras, eine Down-Stage-Down-Look-Kamera, eine Rover-Up-Look-Kamera und eine Rover-Down-Look-Kamera. Das Mars 2020 EDL-System enthält auch ein Mikrofon zur Erfassung von Geräuschen während der EDL, z. B. das Abfeuern von Abstiegsmotoren. Niemand hat jemals eine Fallschirmöffnung in der Marsatmosphäre gesehen, bei der der Rover an die Oberfläche gesenkt wurde…..

The Mars 2020 rover mission has major new technologies that improve entry, descent, and landing: Range TriggerTerrain-Relative NavigationMEDLI2, and its EDL cameras and microphone.

Range Trigger

Range Trigger for smaller, more accurate landing ellipses.

The Range Trigger technique shrinks the Mars 2020 rovers landing ellipse significantly, landing the rover closer to the target area of scientific interest. This example shows Mars 2020’s ellipse in relationship to Mars rover Curiosity’s landing ellipse. Mars 2020 will be landing in a different location. Credit: NASA/JPL-Caltech.
Download full image ›

A Major Improvement in Landing Accuracy

It’s hard to land on Mars, and even harder to land a rover close to its prime scientific target. Previous rovers have landed in the general vicinity of areas targeted for study, but precious weeks and months can be used up just traveling to a prime target. The Mars 2020 mission team is working on a strategy to put the rover on the ground closer to its prime target than was ever before possible. The Range Trigger technology reduces the size of the landing ellipse (an oval-shaped landing area target) by more than 50%. The smaller ellipse size allows the mission team to land at some sites where a larger ellipse would be too risky given they would include more hazards on the surface. That gives scientists access to more high priority sites with environments that could have supported past microbial life.

Range Trigger – It’s All About Timing

The key to the new precision landing technique is choosing the right moment to pull the „trigger“ that releases the spacecraft’s parachute. „Range Trigger“ is the name of the technique that Mars 2020 uses to time the parachute’s deployment. Earlier missions deployed their parachutes as early as possible after the spacecraft reached a desired velocity. Instead of deploying as early as possible, Mars 2020’s Range Trigger deploys the parachute based on the spacecraft’s position relative to the desired landing target. That means the parachute could be deployed early or later depending on how close it is to its desired target. If the spacecraft were going to overshoot the landing target, the parachute would be deployed earlier. If it were going to fall short of the target, the parachute would be deployed later, after the spacecraft flew a little closer to its target.

Shaving Time Off the Commute

The Range Trigger strategy could deliver the Mars 2020 Perseverance rover a few miles closer to the exact spot in the landing area that scientists most want to study. It could shave off as much as a year from the rover’s commute to its prime work site.Another potential advantage of testing the Range Trigger is that it would reduce the risk of any future Mars Sample Return mission, because it would help that mission land closer to samples cached on the surface.

Terrain-Relative Navigation

Mars 2020 Rover - new landing technique

Terrain-Relative Navigation is an innovative entry, descent, and landing technology that allows the rover to detect tricky terrain and divert itself to a safer landing area. Credit: NASA/JPL-Caltech.
Download full image ›

Terrain-Relative Navigation helps us land safely on Mars – especially when the land below is full of hazards like steep slopes and large rocks!

How Terrain-Relative Navigation Works

  • Orbiters create a map of the landing site, including known hazards.
  • The rover stores this map in its computer „brain.“
  • Descending on its parachute, the rover takes pictures of the fast approaching surface.
  • To figure out where it’s headed, the rover quickly compares the landmarks it „sees“ in the images to its onboard map.
  • If it’s heading toward dangerous ground up to about 985 feet (300 meters) in diameter (about the size of two professional baseball fields side by side), the rover can change direction and divert itself toward safer ground.

Why Terrain-Relative Navigation is Important

Terrain-Relative Navigation is critical for Mars exploration. Some of the most interesting places to explore lie in tricky terrain. These places have special rocks and soils that might preserve signs of past microbial life on Mars!

Until now, many of these potential landing sites have been off-limits. The risks of landing in challenging terrain were much too great. For past Mars missions, 99% of the potential landing area (the landing ellipse) had to be free of hazardous slopes and rocks to help ensure a safe landing. Using terrain relative navigation, the Mars 2020 rover can land in more – and more interesting! – landing sites with far less risk.

How Terrain-Relative Navigation Improves Entry, Descent, & Landing

Terrain-Relative Navigation significantly improves estimates of the rover’s position relative to the ground. Improvements in accuracy have a lot to do with when the estimates are made.

In prior missions, the spacecraft carrying the rover estimated its location relative to the ground before entering the Martian atmosphere, as well as during entry, based on an initial guess from radiometric data provided through the Deep Space Network. That technique had an estimation error prior to EDL of about 0.6 – 1.2 miles (about 1-2 kilometers), which grows to about (2 – 3 kilometers) during entry.

Using Terrain-Relative Navigation, the Perseverance rover will estimate its location while descending through the Martian atmosphere on its parachute. That allows the rover to determine its position relative to the ground with an accuracy of about 200 feet (60 meters) or less.It takes two things to reduce the risks of entry, descent, and landing: accurately knowing where the rover is headed and an ability to divert to a safer place when headed toward tricky terrain.

MEDLI2

Improving Models of the Martian Atmosphere for Robotic and Future Human Missions to Mars.

MEDLI2 is a next-generation sensor suite for entry, descent, and landing (EDL). MEDLI2 collects temperature and pressure measurements on the heat shield and afterbody during EDL.

MEDLI2 is based on an instrument flown on NASA’s Mars Science Laboratory (MSL) mission. MEDLI stands for „MSL Entry, Descent, and Landing Instrumentation.“ The original only collected data from the heat shield. MEDLI2 can collect data from the heat shield and from the afterbody as well.This data helps engineers validate their models for designing future entry, descent, and landing systems. Entry, descent, and landing is one of the most challenging times in any landed Mars mission. Atmospheric data from MEDLI2 and MEDA, the rover’s surface weather station, can help scientists and engineers understand atmospheric density and winds. The studies are critical for reducing risks to both robotic and future human missions to Mars.

Entry, Descent, and Landing (EDL) Cameras and Microphone

Unprecedented Visibility into Mars Landings

Mars 2020 has a suite of cameras that can help engineers understand what is happening during one of the riskiest parts of the mission: entry, descent, and landing. The Perseverance rover is based heavily on Curiosity’s successful mission design, but Mars 2020 adds multiple descent cameras to the spacecraft design.

The camera suite includes: parachute „up look“ cameras, a descent-stage „down look“ camera, a rover „up look“ camera, and a rover „down look“ camera. The Mars 2020 EDL system also includes a microphone to capture sounds during EDL, such as the firing of descent engines.

A First-Person View of Landing on Mars

In addition to providing engineering data, the cameras and microphone can be considered „public engagement payloads.“ They are likely to give people on Earth a good and dramatic sense of the ride down to the surface! Memorable videos depicting EDL’s „Seven Minutes of Terror for the 2012 landing of NASA’s Curiosity Mars rover went viral online, but used computer-generated animations. No one has ever seen a parachute opening in the Martian atmosphere, the rover being lowered down to the surface of Mars on a tether from its descent stage, the bridle between the two being cut, and the descent stage flying away after rover touchdown!

10.9 Million Names Now Aboard NASA’s Perseverance Mars Rover

Auch die Namen: von mir und allen anderen auf der Welt wurden bereits installiert

A placard commemorating NASA's "Send Your Name to Mars" campaign was installed on the Persevarnce Mars rover
‚Send Your Name‘ Placard Attached to Perseverance: A placard commemorating NASA’s „Send Your Name to Mars“ campaign was installed on the Persevarnce Mars rover. Three silicon chips (upper left corner) were stenciled with 10,932,295 names and the essays from 155 finalists in NASA’s „Name the Rover“ contest.Credit: NASA/JPL-Caltech. Full image and caption ›

As part of NASA’s ‚Send Your Name to Mars‘ campaign, they’ve been stenciled onto three microchips along with essays from NASA’s ‚Name the Rover‘ contest. Next stop: Mars.


NASA’s „Send Your Name to Mars“ campaign invited people around the world to submit their names to ride aboard the agency’s next rover to the Red Planet. Some 10,932,295 people did just that. The names were stenciled by electron beam onto three fingernail-sized silicon chips, along with the essays of the 155 finalists in NASA’s „Name the Rover“ contest. The chips were then were attached to an aluminum plate on NASA’s Perseverance Mars rover at Kennedy Space Center in Florida on March 16. Scheduled to launch this summer, Perseverance will land at Jezero Crater on Feb. 18, 2021.

The three chips share space on the anodized plate with a laser-etched graphic depicting Earth and Mars joined by the star that gives light to both. While commemorating the rover that connects the two worlds, the simple illustration also pays tribute to the elegant line art of the plaques aboard the Pioneer spacecraft and golden records carried by Voyagers 1 and 2. Affixed to the center of the rover’s aft crossbeam, the plate will be visible to cameras on Perseverance’s mast.

Perseverance rover at Kennedy Space Center
Perseverance Rover at Cape: Top center: The plate on the aft crossbeam of NASA’s Mars Perseverance rover — seen here on March 16, 2020, at NASA’s Kennedy Space Center— carries 10,932,295 names submitted by people during NASA’s „Send Your Name to Mars“ campaign and essays of the 155 finalists in the „Name the Rover“ contest. Credit: NASA/JPL-Caltech. Full image and caption ›

Currently, the coronavirus has not impacted the Mars Perseverance rover launch schedule. The installation was one of numerous recent activities performed by the Perseverance assembly, test and launch operations team. On March 21, the team began reconfiguring the rover so it can ride atop the Atlas V rocket. Steps included stowing the robotic arm, lowering and locking in place the remote sensing mast and high-gain antenna, and retracting its legs and wheels.

The Perseverance rover is a robotic scientist weighing just under 2,300 pounds (1,043 kilograms). It will search for signs of past microbial life, characterize Mars‘ climate and geology, collect samples for future return to Earth, and help pave the way for human exploration of the Red Planet.